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Abstract. The analysis of microwave observations over land to determine atmo- 
spheric and surface parameters is still limited due to the complexity of the inverse 
problem. Neural network techniques have already proved successful as the basis 
of e•cient retrieval methods for nonlinear cases; however, first guess estimates, 
which are used in variational assimilation methods to avoid problems of solution 
nonuniqueness or other forms of solution irregularity, have up to now not been 
used with neural network methods. In this study, a neural network approach is 
developed that uses a first guess. Conceptual bridges are established between the 
neural network and variational assimilation methods. The new neural method 

retrieves the surface skin temperature, the integrated water vapor content, the 
cloud liquid water path and the microwave surface emissivities between 19 and 85 
GHz over land from Special Sensor Microwave Imager observations. The retrieval, 
in parallel, of all these quantities improves the results for consistancy reasons. A 
database to train the neural network is calculated with a radiative transfer model 

and a global collection of coincident surface and atmospheric parameters extracted 
from the National Center for Environmental Prediction reanalysis, from the Inter- 
national Satellite Cloud Climatology Project data, and from microwave emissivity 
atlases previously calculated. The results of the neural network inversion are very 
encouraging. The theoretical RMS error of the surface temperature retrieval over 
the globe is 1.3 K in clear-sky conditions and 1.6 K in cloudy scenes. Water vapor 
is retrieved with a theoretical RMS error of 3.8 kg m -2 in clear conditions and 
4.9 kg m -2 in cloudy situations. The theoretical RMS error in cloud liquid water 
path is 0.08 kg m -2. The surface emissivities are retrieved with an accuracy of 
better than 0.008 in clear conditions and 0.010 in cloudy conditions. Microwave 
land surface temperature retrieval presents a very attractive complement to the 
infrared estimates in cloudy areas: time record of land surface temperature will be 
produced. 

1. Introduction 

Even after 20 years of global microwave satellite ob- 
servations, the use of microwave data over land for the 
retrieval of atmospheric and surface parameters is still 
very limited. While the ocean surface has a low mi- 
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crowave emissivity -•0.5 that produces good contrast 
of atmospheric phenomena against a low brightness 
temperature background, the land surface emissivities 
are usually close to unity, making atmospheric features 
much more difficult to identify against a higher bright- 
ness temperature background. In addition, the land 
surface emissivities are not only variable in space and 
time but also very complex to model since they are mod- 
ulated by vegetation, topography, flooding, and snow, 
among other factors. Until recently, no estimates of the 
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microwave land emissivities over the globe were avail- 
able at a spatial resolution compatible with satellite ob- 
servations. 

Only a few efforts have been directed toward the esti- 
mation of atmospheric parameters and surface tempera- 
ture from microwave observations over land. Jones and 

Vonder Haar [1990] proposed a method to retrieve cloud 
liquid water path, with a more recent development by 
Greenwald et al. [1997], using Special Sensor Microwave 
Imager (SSM/I) observations. They estimate the sur- 
face emissivity with the help of collocated visible and in- 
frared satellite observations to determine clear-sky con- 
ditions before analyzing cloudy scenes, but they only 
present results from a few cases over the central Unated 
StatesS. Njoku [1995] concluded from simulations that 
land surface temperature could be retrieved from multi- 
channel microwave observations with an accuracy of 2 to 
2.5 K. MacFarland et al. [1990] investigated the corre- 
lation between SSM/I observations and surface air tem- 
perature, and Basist et al. [1998] proposed a method 
to retrieve near-surface air temperatures from SSM/I. 

Microwave land surface emissivities over the globe 
have been recently estimated from SSM/I observations 
by removing the contributions of the atmosphere, clouds, 
and rain using ancillary satellite data [Prigent et al., 
1997, 1998]. The correspondences between the geo- 
graphical patterns and seasonal variations of the esti- 
mated microwave emissivities are compatible with geo- 
graphic variations of large-scale topography, vegetation 
type, flooding, and snow cover extent. The standard 
deviations of the day-to-day variations of the retrieved 
emissivities within a month are typically about 0.012 for 
all the SSM/I frequencies, which is an estimate of the 
precision of these estimates. Assuming that these emis- 
sivities are constant over a month, a nonlinear iterative 
variational assimilation was developed to retrieve simul- 
taneously the surface and atmospheric parameters (sur- 
face temperature Ts, integrated water vapor WV, and 
cloud liquid water path LWP) over land from SSM/I 
observations [Prigent and Rossow, 1999]. The theoret- 
ical estimate of the error of the surface temperature 
retrieval has a mean standard deviation of 1.6 K, does 
not strongly depend on surface type, and is not very 
sensitive to the presence of thin clouds. The sensitivity 
of SSM/I to water vapor is very low, except in the most 
arid areas where the microwave surface emissivities are 

low for the horizontal polarization; so the results do not 
improve on the first guess values. With an estimated 
accuracy of -•0.1 kg m -2, the SSM/I retrieval does not 
properly characterize the thinner clouds (the majority), 
but the cloud structures with higher liquid water con- 
tent are well delineated. 

A further improvement in this variational assimila- 
tion scheme could be obtained by also retrieving the 
seven surface emissivities as they undergo small day-to- 
day changes induced by variations of the soil moisture, 
the vegetation density, or the snow cover. However, in 
this case, 10 variables would have to be retrieved (Ts, 

WV, LWP plus the seven emissivities Emi, where i 
represents the seven channels of SSM/I: 19 GHz V, 19 
GHz H, 22 GHz V, 37 GHz V, 37 GHz H, 85 GHz 
V, and 85 GHz H, where V is for vertical polarization 
and H is for horizontal polarization) from the seven 
SSM/I brightness temperatures and additional infor- 
mation would be needed to solve the problem. The 
monthly mean emissivity values previously computed 
could be used as first guess (or, using more specifically 
the variational assimilation formalism, the background) 
estimates of the surface emissivity and the first guess 
matrix of error covariances could be calculated. There 

are several options: The covariance matrix could be 
calculated globally for a given month, estimated for a 
given type of surface, or even calculated for each single 
pixel considering all the monthly mean emissivities for 
this pixel. The inversion scheme would then rely very 
heavily on the representativeness of such covariance ma- 
trices, giving an important weight to the statistical de- 
scription of the emissivity relationships. Given this dif- 
ficulty with the retrieval of the surface emissivities with 
a variational assimilation method, another inversion ap- 
proach is considered. 

Neural network techniques have already proved very 
successful in the development of computationally ef[i- 
cient inversion methods for satellite data and for geo- 
physical applications [Escobar et al., 1993; Aires et al., 
1998; Chevallier et al., 2000]. They are well adapted 
to solve nonlinear problems and are especially designed 
to capitalize on the inherent statistical relationships 
among the retrieved parameters. Such an approach 
has been used for retrieving columnar water vapor and 
liquid water or wind speed using SSM/I observations 
[$togryn et al., 1994; Krasnopolsky et al., 1995; Krasno- 
polsky et al., 2000]. In these works, the problem is better 
defined than over land. Note that variational assimila- 

tion techniques, as usually implemented, do not account 
for correlations among the retrieved parameters but be- 
tween the first guess error of variables. However, for 
many ill-conditioned problems, the use of a first guess 
estimate is very important to regularize the inversion 
process, and the first guess error covariance matrix is 
also essential in three-dimensional/four-dimensional (3- 
D/4-D) variational assimilation schemes since it con- 
trols the impact of the measurements on the retrieved 
parameters [Thipaut et al., 1993]. Up to now, neu- 
ral network techniques have not used such a priori in- 
formation (i.e., a specific state-dependent first guess 
estimate), which was a major handicap of this tech- 
nique compared to the classical variational assimilation 
method. 

In this study, a neural network approach is developed 
that includes the use of a first guess to retrieve the sur- 
face skin temperature Ts, the integrated water vapor 
content WV, the cloud liquid water path LWP, and 
the microwave land surface emissivities Emi between 

19 and 85 GHz from SSM/I observations. Section 2 
shows that the neural network with first guess and vari- 
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ational assimilation approaches share important theo- 
retical concepts and highlights some of the technical 
differences. A simulated database is carefully designed 
to train and test the neural network with special atten- 
tion to its statistical representativeness on a global basis 
(section 3). It is derived from a global collection of co- 
incident surface and atmospheric parameters extracted 
from the National Center for Environmental Predic- 

tion (NCEP) reanalysis, from the International Satel- 
lite Cloud Climatology Project (ISCCP) data [Rossow 
and $chi•er, 1991], and from the microwave emissivity 
atlases previously calculated. Results are presented in 
section 4, and section 5 concludes this study, highlight- 
ing the merits of the neural network inversion technique. 

2. Neural Network and Variational 

Assimilation Techniques 
2.1. Inverse Problems 

Let y be a physical forward-model output (the radia- 
tive transfer function in the atmosphere for the follow- 
ing application) so that 

yO _ y(x) 4- •7, (1) 

where x are the physical variables (Ts, WV, LWP, and 
the seven Emi in this study), yO are the observations 
(seven brightness temperatures TB observed by SSM/I 
in this study), and •1 are the observation (or model) un- 
certainties (instrumental noise on SSM/I in this study). 
Note here that y and x are vectors representing mul- 
tivariate observations and multiparameter data. The 
inverse problem consists in retrieving the physical vari- 
ables x given the observation yO. There exist two main 
approaches to solve this problem. 

In the first one called "localized" inversion, an inverse 
process is used for each observation to find an estimate 
•: of the physical variables x by minimizing a distance 

D(y(:•),yø). (2) 

This distance is dependent on the a priori information 
available on the probability distribution functions of the 
variables involved. If the observations yO are assumed 
to be Gaussian distributed with zero mean and without 

other a priori information, the Mahalanobis distance 
[Crone and Crosby, 1995] is optimal 

I o]t yt -• o], <y. > 
where • y. yt • is the covariance matrix of the ob- 
servable quantities without measurement noise y. This 
is preferable than using noisy observations because in 
that way we compare two quantities y(•) and y0 more 
directly in their structure, that is, less sensitive to the 
noise which pollutes the comparison. This procedure 
has to be applied to find an optimum solution for each 
observation separately and can require significant com- 
putational resources. 

The second approach consists in estimating a trans- 
fer function gw, with parameters W, that is a global 
model for y-1. The parameters W are the results of 
the minimization of a cost function 

D(•,x)P(x,v), (4) 
where • - gw(y ø) - gw(y(x)+ •1) and P is the joint 
probability distribution of the physical variables x and 
the noise •1. The distance D(•, x) is integrated over the 
physical states and over the observation noise, so that 
the transfer function g•v is optimized globally over the 
range of x and the noise. In practice, to minimize the 
previous criterion, a database is created, composed of 
a statistically representative sample of coincident vari- 
ables x and observations yO and the estimation of the 
parameters W is made once and for all using this data 
set. These schemes are called "global" inversions. Af- 
ter this preliminary step for the estimation of W, the 
inversion of an observation is very fast since it involves 
only the direct use of the transfer function 

The distances used for localized and global inversion 
schemes involves different variables. The first one works 

on the brightness temperature space, the second one on 
physical variable space. The optimum solution in (4) 
gives an estimation • that is close to the true solution 
x while the distance in (2) specifies that the brightness 
temperatures y (•:), associated with the estimated solu- 
tion •, are close to the brightness temperatures y(x), 
associated to the real solution x. 

Inverse problems are often ill-posed since the exis- 
tence and the uniqueness or the stability of the solution 
is not always known [Vapnik, 1997]. This is especially 
the case when the "forward" model y(x) is not linear; 
in our case the radiative transfer is not linear. To reg- 
ularize the inversion process, all a priori information 
available should be used to constrain the solution, the 
inverse model, or the noise model. For example, a first 
guess x • for the solution can be used, a "virtual" mea- 
surement in contrast to the observations yO which are 
"direct" measurements. To our knowledge, this has not 
been tried in neural network inversion schemes. 

In this study, a localized technique, the variational 
assimilation approach, and a global technique, the neu- 
ral network approach, are theoretically compared. Both 
can solve nonlinear problems. Notations are summa- 
rized in the notation list. The variational assimilation 

is described in Appendix A, using the same formalism 
and notation in order to facilitate the comparison with 
the neural network technique. 

2.2. New Neural Network Inversion Scheme 

Using First Guess Information 

2.2.1. Nonlinear model' The multilayer per- 
ceptron neural network. The multilayer percep- 
tron (MLP) network is a nonlinear mapping model com- 
posed of parallel processors called "neurons." These 
processors are organized in distinct layers: The first 
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Figure 1. Neural network architectures' (a) classical 
MLP, and (b) MLP with first guess. Variable yO is the 
observation, and xb is the first guess for x, the retrieved 
variables. 

layer S0 represents the input Y = (Yi; i E So) of the 
mapping. The last layer $L represents the output map- 
ping X = (xk; k E Sœ). The intermediate layers Sm 
(0 < m < L) are called the "hidden layers." These lay- 
ers are connected via neural links (Figure 1): Any neu- 
rons, i and j, in two consecutive layers are connected 
with a synaptic weight Wij. 

Each neuron j executes two simple operations. First, 
it makes a weighted sum of all of its inputs zi: This 
signal is called the activity of the neuron 

aj '- • Wij ' Zi. (5) 
ielnputs(j) 

Then it transfers this signal to its output through a so- 
called "activation function," often a sigmoid function 
such as rr(a) - tanh(a). The output z3- of neuron j in 
the hidden layer is then given by 

zj- rr(aj)--rr ( • ielnputs(j) Wij (6) 

Generally, for regression problems, the output units 
have no activation function. For example, in a one- 

hidden-layer MLP, the kth output xk of the network is 
defined as 

Xk(Y)- Z Wjk o'(aJ)- Z Wjk O' (i••So wij jES• jES• 

(7) 
This equation is the only computation required in the 
operational mode (once the synaptic weights have been 
determined by the training procedure). A bias term for 
each neuron has been deliberately omitted to simplify 
the notation, although if it is used in the neural network. 
It has been demonstrated [Hornik et al., 1989; Cybenko, 
1989] that any continuous function can be represented 
by a one-hidden-layer MLP with sigmoid functions 

2.2.2. Optimization algorithm: Backpropa- 
gation of errors. Given a neural architecture (func- 
tions used as activation functions a, number of layers, 
neurons, and connections), all the information of the 
network is contained in the set of all synaptic weights 
W = {wij}. The learning algorithm is an optimization 
technique that estimates the optimal network parame- 
ters W by minimizing a cost function Cx (W), approach- 
ing as closely as possible the desired function. The cri- 
terion usually used to derive W is the mean square error 
in network outputs 

1 // (w) - 
k6S2 

o. (Y; w), 

(8) 

where DE is the Euclidean distance between xk, the 
kth desired output component, and •, the kth neural 
network output component, and $2 is the output layer 
of the neural network. Other contrast measures can 

be used if a priori information is available. P(Y, x•) is 
the joint probability distribution function of ¾ and xk. 
This criterion is just the integrated distance between 5 
and x introduced in (4). 

In practice, the probability distribution function 
P(Y, xk) is sampled in a data set B = {(ye,x•e),e = 
1,...,N} of N input/output couples, and Cx(W) is 
then approximated by the classical least squares cri- 
terion: 

N 
1 

d• (W) -- • • • DE(• (ye; W), xke) 2. (9) 
e=l k6S2 

The error back-propagation algorithm [Rumelhart et 
al., 1986] is used to minimize •x (W). It is a gradient de- 
scent algorithm that is very well adapted to the MLP hi- 
erarchical architecture because the computational cost 
is linearly related to the number of parameters. Tradi- 
tional gradient descent algorithms use all the samples of 
the data set/5 to compute a mean Jacobian of the cri- 
terion C• (W) in (9). These algorithms are called deter- 
ministic gradient descent. The major inconvenience of 
this approach is that the descent can be trapped in local 
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minima. In the present application, a stochastic gradi- 
ent descent algorithm is adopted: It uses the gradient 
descent formula iteratively for a unique random sample 
in the data set. With some constraints not discussed 

here, the stochastic character of this optimization algo- 
rithm theoretically allows the optimization technique to 
reach the global minimum of the criterion instead of a 
local minimum [Du•o, 1996]. 

2.2.3. Introduction of the first guess. When 
an inverse problem is ill-posed, the solution can be 
nonunique and/or unstable. The use of a priori first 
guess information is important to suppress ambiguities: 
The chosen solution is then constrained so that it is 

physically more coherent. Statistically, this regulariza- 
tion avoids local minima during the learning process 
and it speeds it up. 

Introduction of a priori first guess information as part 
of the input to the neural network is proposed. This 
idea is simple and general. However, the inputs of the 
network are no longer homogeneous (i.e., different types 
of variables, which changes their dynamics), but this 
problem can be solved as described below. First, the 
neural transfer function becomes 

:• - g•(x•, yø), (10) 

where • is the retrieval (i.e., retrieved physical param- 
eters), gw is the neural network g with parameters W, 
x b is the first guess for the retrieval of physical param- 
eters x, yO _ y(x) + r• are the observations, and •] the 
observation noise. 

The learning algorithm consists of estimating the pa- 
rameters W of the neural network that minimize the 

mean least squares error criterion. The term "mean" 
depends on the probability distribution functions of the 
physical problem. In this experiment the least squares 
criterion is of the following form 

yO), 

c(w) - 5 + + 

where ?(x) is the probability distribution function of 
the physical variables z that depends on the natural 
variability. Pv(•) is the probability distribution func- 
tion of the observation noise •. P, (•) is the probability 
distribution function of the first guess error • = z* - z. 

The quality criterion in (11) is very similar to the 
quality criterion of variational assimilation in (A2). The 
differences are that in neural network criterion we min- 

imize a difference (i.e., least squares approach for the 
Euclidian distance), and in the variational assimilation 
approach, we maximize a conditional expectation (i.e., 
maximum likelihood approach, which is close to least 
squares). Furthermore, neural network criterion in (11) 

involves the distribution P(x). This is due to the fact 
that the neural network simulates the inverse of the ra- 

diative transfer equation globally, once and for all, and 
uses the distribution P(x) for this purpose. The neural 
network model is then valid for all observations (i.e., 
global inversion). The variational assimilation model 
has to compute an estimator for each observation (i.e., 
local inversion). 

To minimize this criterion, we create a data set • - 
{(x ,..., , , e - I N} that samples as well as 
possible all the probability distribution functions in 
(11). Then the practical criterion used during the learn- 
ing stage is given by 

N 

(•2(W) - •-• • Dz(gw(xb•,yø•),x•)) 2. (13) 
e=l 

First, to sample the probability distribution function 
P(x), we select geophysical states (xe) that cover all 
natural combinations and their correlations and by cal- 
culating ye = y(x e) with the physical model (the radia- 
tive transfer model in this case). Alternatively, we could 
obtain these relationships from a "su•ciently large" set 
of colocated and coincident values of y and x. For sam- 
pling Pv, we need a priori information about the mea- 
surement noise characteristics; a physical noise model 
could be used, but if all we have is an estimation of the 
noise magnitude, then we have to assume Gaussian dis- 
tributed noise •] that is not correlated among the mea- 
surements. To sample the first guess variability with 
respect to state x (i.e., sampling P(x•lx)), there are two 
situations. If a first guess data set {x•e; e - 1,..., 
exists, then x •e can be used directly. If such a data 
set is not available, we have to determine P(c) (as it 
is done in variational assimilation technique), the dis- 
tribution of errors in the first guess, c - x 5 - x, and 
use x b - x + • as input to the network. The balance 
between reliance on the first guess and the direct mea- 
surements is then made automatically and optimally by 
the neural network during the training. 

Table 1 summarizes the specific features of the neu- 
ral network scheme with first guess and the variational 
assimilation inversion technique. 

3. Generation of a Database to Train 
the Neural Network 

To constrain the problem (the problem is then better 
posed), we use the clear/cloudy flag information pro- 
vided by the ISCCP data set to train two neural net- 
works: One for clear scenes (NN1) and one for cloudy 
scenes (NN2). This specialization of the NNs facili- 
tate the training of the neural network models. They 
both retrieve simultaneously the surface temperature 
Ts, the integrated water vapor content WV, and the 
seven SSM/I surface emissivities Emi. In addition to 
these parameters, NN2 retrieves the cloud liquid water 
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Table 1. Comparison of the Variational Assimilation and Neural Network Inversion Schemes 

Variational Method Neural Network Inversion 

Observation / measurement 
First guess a priori information 
Retrieved variable 

Direct model used 

Inverse model 

Model 

Quality criterion 
Data set of observations 

Direct model errors 

First guess error 

Observation error 

Inversion type 

O 
x b 
x 

radiative transfer model, 
used during the inversion 

linearized locally 
y(x) = y(x) + - 
f f x (xlyø,x 
used to estimate the first guess 

error covariance matrix B 

assumed to be Gaussian: 
with error covariance matrix F 

assumed to be Gaussian: 
with error covariance matrix B 

assumed to be Gaussian: 
with error covariance matrix E 

local inversion: inversion 

process for each observation 

O 
x b 
x 

radiative transfer model, 
used during the construction of 
if no collocated data set exists 

nonlinear, global 
nonlinear: x = gw(x •', yO) 

f f f 
used to sample the pdfs 

already sampled in the data set, 
if B is simulated by a RT model 

no constraint, simulated using true 
and first guess solution data sets 

no constraint, depends on instrument, 
supposed Gaussian in this study, E 

global inversion: estimation of the 
inverse model once and for all 

path L WP. Two sources of information are used for 
this purpose: (1) seven SSM/I brightness temperatures 
(observations), and (2) a priori information of the state 
of the surface and atmospheric variables from ancillary 
data sets. In this study the experimental configuration 
is similar to the one used by Prigent and Rossow [1999]. 
A collection of SSM/I observations colocated and coin- 
cident with independent measurements of the param- 
eters to be retrieved (Ts, WV, LWP, and the Emi) 
is not available. However, other estimates of Ts and 
LWP are available every 3 hours from ISCCP, NCEP 
provides WV analysis every 6 hours, and the land sur- 
face microwave emissivities are available as monthly es- 
timates. As a consequence, brightness temperatures 
simulated by the radiative transfer model are used in 
the database instead of observations. These radiative 

transfer results are obtained using the selected values 
of Ts, WV, LWP, and Emi. To the extent that these 
data sets provide a proper global distribution of the sur- 
face and atmospheric parameters, including their corre- 
lations, the neural network represents a global fit of the 
inverse radiative transfer model (i.e., transfer function). 

The SSM/I instrument on the Defense Meteorologi- 
cal Satellite Program polar satellites senses atmospheric 
and surface emissions at 19.35, 22.235, 37.0, and 85.5 
GHz with both horizontal and vertical polarizations, ex- 
cept for 22.235 G Hz which is vertical polarization only 
[Hollinger et al., 1987]. An instrument evaluation has 
been performed by Hollinger et al. [1990], and an in- 
tersensor calibration has been completed by Colton and 
Poe [1999]. The radiometric noise is supposed to be 
Gaussian distributed, so it is entirely defined by its noise 
covariance matrix E = < •7' •7 t >. Errors in channels are 
supposed to be uncorrelated, and the standard devia- 

tion of each channel error is estimated to be 0.6 K. So 

matrix E is defined as 0.6 x I7x7, where I7x• is the 7 x 7 
identity matrix. 

3.1. A Priori First Guess Information and 

Related Background Errors 

3.1.1. Water vapor first guess derived from 
the NCEP reanalysis. The temperatures and rela- 
tive humidities for eight levels up to 300 mbar (middle 
and lower troposphere) are available from the NCEP 
reanalysis data set. The N CEP reanalysis project is de- 
scribed by Kalnay et al. [1996]. It uses various data col- 
lections but excludes SSM/I derived information. These 
profiles are available every 6 hours at a spatial resolu- 
tion of 2.5 ø in latitude and longitude. For each loca- 
tion the atmospheric profile has been adjusted for con- 
sistency with the topography (truncation or downward 
extrapolation of the atmospheric profiles depending on 
the topography differences between the N CEP reference 
elevation and ours). The integrated water vapor WV is 
used as first guess a priori information. The first guess 
error is taken to be 0.4 times the NCEP WV first guess, 
similar to the WV error values obtained when using the 
error covariance of each humidity level as given by Eyre 
et al. [1993]. The mean temperature of the first atmo- 
spheric layer Ta derived from NCEP is also used as a 
priori information in the retrieval. 

3.1.2. Use of the ISCCP data set. In the IS- 

CCP data, cloud parameters and related quantities are 
retrieved from visible (VIS --0.6/•m wavelength) and in- 
frared (IR 0•11/•m wavelength) radiances provided by 
the set of polar and geostationary meteorological satel- 
lites [Rossow and Schiffer, 1999]. The ISCCP data set 
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is used in this study to discriminate between clear and 
cloudy scenes (selecting NN1 or NN2) and to give es- 
timates of the cloud top temperature and surface skin 
temperatures. The pixel level data set (the DX data set) 
is selected for its spatial sampling of about 30 km and 
its sampling interval of 3 hours [Rossow et al., 1996]. 

3.1.2.1. Surface temperature first guess: IS- 
CCP provides the surface skin temperature first guess 
retrieved from IR radiances under clear conditions. The 

IR emissivity of the surface is always close to I and 
varies with the land surface type as in the Goddard 
Institute for Space Studies general circulation model. 
Instead of selecting the closest-in-time DX image to de- 
rive the surface temperature, a linear interpolation be- 
tween two ISCCP surface temperature estimates to the 
precise time of the SSM/I overpass is calculated to ac- 
count for the diurnal cycle. If the ISCCP DX scenes are 
cloudy, a clear-sky compositing procedure is conducted 
within the ISCCP process to derive an estimation of 
the surface temperature (see Rossow and Gatder [1993] 
for more details). The error associated with the sur- 
face temperature is estimated to be 4 K [Rossow and 
Gatder, 1993]. 

3.1.2.2. Cloud a priori information' First the 
ISCCP data discriminates between clear and cloudy 
scenes. Over the ocean it has been shown that the 

VIS and IR observat. ions ha.ve a better ability than 
the microwave measurements to detect clouds [Lin and 
Rossow, 1994]. Given that the sensitivity of the mi- 
crowave to clouds over land is much lower than over 

ocean, when a pixel is considered clear by the ISCCP 
procedure, the LWP is fixed to zero. Two neural net- 
works are used, one for clear scenes another for cloudy 
scenes. The ISCCP cloud flag directs the retrieval to 
one network or the other. 

For cloudy scenes, the cloud top temperature derived 
from IR measurements is added to the retrieval process 
as additional information to account for the changes in 
the emission temperature of the cloud and in the cloud 
liquid water absorption coefficient. In contrast to the 
ocean case, clouds induce only small variations in the 
microwave radiation over land and additional cloud in- 

formation improves their retrieval. Prigent and Rossow 
[1999] showed that the ability to estimate liquid water 
path depends essentially on the contrast between the 
radiance emitted by the cloud and the radiance that 
emanates from the surface: consequently, the accuracy 
of LWP retrieval varies widely with the cloud condi- 
tion, especially with cloud top temperature [Prigent and 
Rossow, 1999]. Thus knowledge of the cloud top tem- 
perature helps retrieve cloud liquid water path, and the 
ISCCP DX cloud top temperature derived from IR mea- 
surements is used as a priori information. If the ISCCP 
DX cloud top temperature is >_ 260 K, it is assumed that 
the cloud is composed of liquid water [Lin and Rossow, 
1997] and the location of the cloud temperature is dic- 
tated by ISCCP. 
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Figure 2. Distribution of liquid water cloud top tem- 
perature (Tc) in June for three different latitude zones: 
tropical (0øN-15øN), mid latitude (30øN-45øN), and 
high-latitude (60øN-75øN) zones. 

If the ISCCP cloud top temperature is < 260 K, the 
higher portion of the cloud is probably formed of ice and 
the contribution of the ice in the cloud is not consid- 

ered. There is a possibility that this ice cloud obscures 
a liquid cloud or becomes a liquid cloud below. An anal- 
ysis has been performed on global ISCCP DX data to 
estimate the statistical distribution of cloud top temper- 
ature of the liquid clouds over land for each 15 ø latitude 
zone for each month. Examples of these distributions 
are given in Figure 2. Assuming that the distribution 
of liquid cloud top temperatures is not modified in the 
presence of an overlying ice cloud, the first guess liq- 
uid cloud top temperature is then stochastically drawn 
from the distribution of liquid cloud top temperature of 
the corresponding month and latitude zone to maintain 
random error characteristics. 

3.1.3. Microwave emissivities. First guess a 
priori information for the microwave emissivities at each 
location are derived from the monthly mean emissivities 
previously estimated by Prigent et al. [1997]. The stan- 
dard deviation of day-to-day variations of the retrieved 
emissivities within a month cr• have been calculated for 
each channel and for each location and are used as es- 

timates of first guess errors for these quantities. 

3.2. Radiative Transfer Model 

A direct radiative transfer (RT) model adapted to 
the SSM/I channels is used to create the learning and 
testing databases required for the neural network inver- 
sion. The MPM 93 gaseous absorption model of Liebe 
et al. [1993] is adopted for all the SSM/I frequencies. 
In this model, H20 and 02 lines are added up to I THz, 
assuming a Van Vleck Weisskopf line shape. For oxy- 
gen, this function is modified by Rosenl•ranz [1992] to 
include line coupling in the 60 GHz band. An empir- 
ical H20 continuum is added, derived from laboratory 
measurements [Liebe et aL, 1993]. A revised gaseous 
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absorption model, validated up to submillimeter wave- 
lengths, has been recently developed [Pardo et al., 2001] 
but is not used in this study because the differences at 
SSM/I frequencies are negligible. 

Cloud absorption is calculated using the Rayleigh ap- 
proximation which is valid for most non precipitating 
liquid water clouds at SSM/I frequencies. The cloud 
temperature is assumed to be equal to the air tem- 
perature at the same level. The dielectric properties 
of liquid water are taken from Manabe et al. [1987]. 
Scattering by large particles is not considered, mean- 
ing that convective clouds and rain are not represented 
in the database. The surface contribution is calculated 
using the monthly mean emissivities previously calcu- 
lated [Prigent et al., 1997, 1998] and assuming specular 
reflection at the surface. 

The consistency of the radiative transfer model has 
been checked. Observed brightness temperatures and 
simulated Tbs using the ISCCP Ts and LWP, the 
NCEP WV, and the monthly Emi have been compared 
for 2 months of SSM/I data globally over snow and ice- 
free pixels: For all channels the bias is smaller than 
0.5 K even for cloudy cases. Thus the training data set 
generated with this radiative transfer model and sources 
of global data accurately represents the distribution of 
these parameters that SSM/I observes. 

3.3. Statistical Analysis of the Training 
Database 

The training database generated by the RT model 
applied to the ISCCP, NCEP, and monthly Emi data 
sets contains the variables to be retrieved (Ts, WV, 
LWP, and the seven Emi), the seven simulated bright- 
ness temperatures Tb, and a priori information on the 
cloud top temperature Tc and the temperature of the 
lowest layer of the atmosphere Ta. An error is associ- 
ated with most variables that are used as first guesses. 
The database is produced from data collected for Jan- 
uary and June 1993 over land between 60øS and 80circN. 
Snow- or ice-covered pixels are not considered: The 
snow and ice information comes from the NOAA op- 
erational analysis. Of 1,391,671 samples collected, 55% 
of them correspond to cloudy scenes. 

Figure 3 shows the "global" distributions of some of 
the variables in the training database. The distribu- 
tions are non-Gaussian and some of them are truncated. 

For example, the liquid water path distribution has its 
peak frequency at the lowest values and obviously can- 
not be negative. When retrieving such a variable with 
the usual form of the variational assimilation, the as- 
sumptions of a Gaussian distribution and positive val- 
ues introduces biases in the retrieval. A change of vari- 
ables is sometimes performed to alleviate this problem 
of non-Gaussian distributions [Phalippou, 1996]. The 
clear and cloudy distributions of the brightness tem- 
peratures are very similar for all frequencies and for 
both polarizations indicating the difficulty of detecting 

clouds over land. These distributions have been used to 
control the quality of the data: Values lying beyond the 
first zero frequency on either side of the mode values in 
the distributions have been suppressed. 

A good representation of the physical probability dis- 
tributions in the learning data set is fundamental to 
describe all complex relationships of the variables, es- 
pecially when the distributions are non-Gaussian. The 
data set needs to sample the real probability density 
function (pdf) if we want the neural network to be op- 
timal for this natural variability. Another possible ap- 
proach would be to use uniform distributions in order 
to give the same statistical weight to each atmospheric 
condition, even to extreme events, which would allow 
the neural network to have the same level of accuracy 
for all atmospheric situations. In this work we have 
chosen to optimize accuracy for the most frequently oc- 
curring events. 

Table 2 presents the linear correlations between the 
variables, in the global database for clear and cloudy 
cases, separately, to illustrate the inter dependence of 
the variables in the database. These correlations do not 

distinguish direct dependence between variables from 
indirect ones due to intermediate variables: Variables 

that are not physically related can be statistically cor- 
related via a third variable. This illustrative calculation 

assumes linear relationships between the variables but 
nonlinear relationships are more likely. Note that the 
neural network technique can exploit these nonlinear 
correlations between variables to improve the retrievals, 
whereas the usual forms of the variational assimilation 

approach neglect all correlations. 
The seven Tb are strongly correlated with each other, 

especially for a given polarization. This fact is often ig- 
nored in design of simpler retrieval methods and in the 
estimation of their errors (cf. discussion by Lin and 
Rossow [1994]). Note that the Tb in this table are cal- 
culated by the physical model, but similar results (not 
shown) are obtained with observed Tb. The seven Emi 
are also highly correlated (correlation _>0.7)' Since the 
seven emissivities are not independent variables, use of 
their statistical relationships will definitively help con- 
strain their retrieval. 

At a given frequency, correlation of the surface tem- 
perature with brightness temperature is higher for the 
vertical polarization than the horizontal one. This can 
be explained by less variability in the emissivities for the 
vertical polarization than for the horizontal one. Cor- 
relations between surface temperature and brightness 
temperatures at vertical polarization are similar at all 
SSM/I frequencies, which was not anticipated. At 22 
and 85 GHz, water vapor absorption was expected to 
impede a direct relation between surface contributions 
and top of the atmosphere measurements, and as a mat- 
ter of fact, derivatives of the brightness temperatures 
with surface temperature (sensitivities) are smaller at 
22 and 85 GHz than at 19 and 37 GHz [Prigent and 
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Figure 3. Probability distribution functions of variables in the training database. 
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Rossow, 1999]. Other authors have also observed large 
correlations at 85 GHz between surface air temperatures 
and Tbs at 85 GHz. MacFarland et al. [1990] investi- 
gated the correlation between SSM/I observations and 
surface air temperature and concluded that 22 and 85 
GHz measurements, depending on the surface type, are 
the most sensitive to the land surface temperature. Ba- 
sist et al. [1998] also proposed a method to retrieve 
near-surface air temperature from SSM/I that relies 
heavily on the 85 GHz channels. These results can be 
explained by two factors. First, for a given polarization 
the surface emissivities at 19 GHz are more variable 

than at other frequencies because of higher sensitivity 
to surface properties like soil moisture or vegetation wa- 
ter content and structure. These emissivity variations 
are not correlated with surface temperatures fluctua- 
tions as indicated by the correlation coe•cients between 
Ts and emissivity at 19 GHz (see Table 2). Second, the 
absorption at 22 and 85 GHz actually attenuates the ef- 
fects of emissivity fluctuations, enhancing the relation- 
ship between brightness temperatures and surface tem- 
perature. The global correlation coe•cients in Table 2 
may not be representative on a local scale. However, 
correlation coeificients for Ts have been calculated for 

three ranges of atmospheric water vapor amount and 
emissivities and no significant differences were observed 
in the coeificients. 

Global correlations between atmospheric water va- 
por and brightness temperatures are relatively low es- 
pecially for vertical polarization because of large surface 
emissivities reducing the contrast between atmospheric 
and surface emissions. Even for horizontal polarization, 
global correlations never exceed 0.6. However, these 
global values mask large local differences. Correlation 
coe•cients calculated for different ranges of emissivities 
and water vapor amounts show that the results are very 
different, especially for the 85 and 22 GHz channels de- 
pending on water vapor amount. As a consequence, the 
use of simple algorithms based on linear regressions or 
on global correlation statistics will not be adequate. 

Cloud liquid water path is not correlated with the 
Tbs (correlation coe•cients lower than 0.2), whatever 
the channel. This casts doubts on the ability of the 
SSM/I observations for accurate liquid water retrieval 
over land, unless additional observations or a priori in- 
formation are added to the retrieval process. 

The neural network analyzes all the local statistical 
relationships in the database and benefits from them, 
even when the relationships are highly nonlinear. These 
relationships represent nonlinear correlations among the 
physical variables, among the observations (brightness 
temperatures), among the first guess errors, and be- 
tween the variables and the observations. All of these 

correlations constitute additional information which the 

neural network can exploit to improve its retrieval if 
such correlations are properly represented in the train- 
ing data set. 
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In contrast, the variational assimilation scheme, in 
its classical implementation, does not take into account 
statistical information about correlation between the 

variables (see Appendix A). It only uses the matrices of 
first guess and observation error covariances. In most 
formulations it is assumed that the first guess errors are 
uncorrelated (i.e., diagonal covariance matrices). These 
matrices are often calculated locally and may not be 
representative at a global scale. At the European Cen- 
tre for Medium-Range Weather Forecasts (ECMWF), 
for instance, the matrices of error ½ovariance for water 
vapor and temperatures have been estimated from ob- 
servations in the London area only [Eyre et al., 1993; 
Gadd et al., 1995]. Presently, first guess error (or, more 
precisely, background error, in the variational assimila- 
tion terminology) covariance matrices are estimated by 
ECMWF with a certain latitude dependence assuming 
that the difference between forecasts at different ranges 
valid at the same time are representative of short-range 
forecast error IRabier et al., 1998; Derbet and Boutier, 
1999]. Still, no cross correlation between the first guess 
error of temperature, specific humidity, and ozone is 
used, whereas situation-dependent first guess error co- 
variance matrices with different length scales at differ- 
ent locations are desirable. 

To represent such complex relationships between the 
variables, matrices of error covariances would have to be 
calculated for a set of situations that describe the cor- 

related time and space variabilities of the parameters. 
Use of localized covariance matrices corresponds to the 

linearization of a complex, nonlinear function, possibly 
producing continuity problems. Because of its nonlinear 
capacity, the neural network approach avoids these dif- 
ficulties by adapting itself to the statistical variabilities 
and correlation relationships of the physical variables, 
provided that the database satisfactorily describes the 
variety of the situations to be analyzed. 

4. Results From the Neural Network 

Inversions 

Two neural networks have been trained, one for clear 
pixels (NN1) the other one for cloudy pixels (NN2), 
both using a priori first guess information. The ISCCP 
cloud flag discriminates between clear and cloudy pix- 
els. The architecture of the network NN1 is a MLP with 

17 inputs coding the seven SSM/I observations, y0, and 
the first guess, xb (Ts, Ta, WV, and 7 Emi), 30 neu- 
rons in the hidden layer, and 9 neurons in the output 
layer coding the retrieval, x (Ts, WV, and 7 Emi). The 
number of neurons in the hidden layer is estimated by 
a heuristic procedure that monitors the generalization 
errors of the neural network as the configuration is var- 
ied. The network NN2 has one additional input, the 
cloud top temperature Tc, and one additional retrieval, 
the liquid water path (LWP). The input variables and 
their associated standard deviation errors are summa- 

rized in Table 3. The full matrix of the error covariances 

is calculated at the end of the training phase (not shown 
here). This matrix gives the statistical structure of the 

Table 3. RMS Error Results for First Guess and Retrievals 

Observation NN1 NN1 NN2 NN2 

or First Guess Clear Without Clear With Cloudy Without Cloudy With 
Errors First Guess First Guess First Guess First Guess 

TbSSMI 19 GHz V (K) 
TbSSMI 19 GHz H (K) 
TbSSMI 22 GHz V (K) 
TbSSMI 37 GHz V (K) 
TbSSMI 37 GHz H (K) 
TbSSMI 85 GHz V (K) 
TbSSMI 85 GHz H (K) 
Ta•(K) 
Tcb(K) 

Tsb(K) 
LWpb(kg.m-2) 
WV•(kg.m-2) 
Era 19 GHz V 
Em 19 GHz H 
Era 22 GHz V 
Era 37 GHz V 
Em 37 GHz H 
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Figure 4. Time evolution of the RMS retrieval errors during the learning phase of the neural 
network for network with (FG) and without first guess inputs. 

errors and is of great importance in the assimilation of 
retrieved products in a Numerical Weather Prediction 
scheme. 

For each variable the distribution of the first guess 
error is a Gaussian truncated at 2 standard deviations. 

In contrast to the variational assimilation, where only 
Gaussian distributions can be used, the neural network 
method can use any distribution shape. However in the 
present study, no in situ data are available to calculate 
the distribution of the first guess errors, so Gaussian 
noise is introduced independently for each variable to 
generate the first guess. In the operational mode with 
real first guesses, the technique will use the structure of 
the first guess error correlations and the results should 
be even better. 

Figure 4 presents the learning curves of the neural 
network for clear and cloudy situations with and with- 
out first guesses. To measure the impact of the intro- 
duction of the first guess information in a neural net- 
work inversion scheme, two additional networks have 
been trained without first guesses, one for clear condi- 
tions and another for cloudy scenes. The architectures 
of the networks without first guess are similar in struc- 
tures, except that there are only seven inputs, coding 
the SSM/I observations yO. For each retrieved variable, 
the RMS error decreases from the first guess RMS er- 
ror to a stable value after several iterations. The net- 

works with first guess input show substantially better 
fits to the training data set (see Table 3 for retrieved 
variable RMS global errors for the networks with and 

without first guess). The continuity between the two 
networks NN1 and NN2 at low liquid cloud content 
(LWP _•0.005) has been checked and is satisfactory' 
Mean differences are-0.5 K in Ts and 0.79 kg m -2 in 
WV. 

Results for I day are displayed on Plate 1, for T s, 
WV, LWP, and Em at 19 GHz horizontal polariza- 
tion. For the same retrieved variables, Figure 5 shows 
the distributions of the retrieval errors, separately for 
three ranges of Em and for clear and cloudy scenes, 
since different sensitivities to the retrieved parameters 
are expected depending on the surface and cloud charac- 
teristics. The surface types classified by monthly mean 
Em at 19 GHz in the horizontal polarization are related 
to the vegetation density [Prigent et al., 2001]' Surfaces 
with 19 GHz Em< 0.9 for the horizontal polarization 
generally correspond to desert-like areas; zones of dense 
vegetation show 19 GHz emissivities > 0.95. Cloudy 
scenes are divided into two groups according to their 
LWP estimated by ISCCP. The results for each vari- 
able are discussed next. 

4.1. Surface Temperature 

The SSM/I observations have a good ability to mea- 
sure the surface skin temperature with a RMS error of 
1.3 K in clear areas and 1.6 K in cloudy cases. This 
RMS error represents a significant improvement over 
the first guess RMS of 4 K, which was based in part on 
the inability of infrared instruments to measure surface 
temperature under cloudy conditions. The accuracy of 



AIRES ET AL- NEURAL INVERSION OF MICROWAVE OVER LAND 14,899 

(a) 
.85<Em2<.90 .90<Em2<.95 .95<Em2 .85<Em2<.90 .90<Em2<.95 .95<Em2 

(b) 

. 

.8 

.6 

.4 

.2 

.0 
-4-2 0 2 4 

.8 

.0 .1 .2 .3 .4 

(o) 

. 

.8 

.6 

.4 

.2 

.0 
-.2 -.1 

.85<Em2<.90 .90<Em2<.95 .95<Em2 

: /& .131 : M .146 : f• '154 

051 • • _ . 1.052 [• / .0•6 • • 
(0 ' 

- k I k k/ 5, o 
1. 

.0 .1 .2 .8 

.g5<Em2<.90 .90<Em2<.95 .95<Em2 

-.010 .0 .010 

Figure 15. Normalized histograms of the errors (new minus observed) for (a) Ts in Kelvin, (b) 
WV in relative error, (c)LWP in kg m -2, and (d) Em 19 GHz horizontal polarization. Results 
are presented for three cloud conditions (clear-sky, ISCCP LWP lower than 0.1 kg m -2, and 
higher than 0.1 kg m -2) and for three ranges of Em at 19 GHz horizontal polarization. Solid 
lines indicate the errors with first guess and dashed lines without first guess. The RMS errors 
are indicated with first guess and without first guess (in parentheses). 

this retrieval is not affected much by the presence of 
clouds (Figure 5), and it increases slightly with increas- 
ing surface emissivity because of the increased contri- 
bution of the surface to the observed brightness tem- 
peratures. Examination of Plate i shows that the sur- 
face temperature fields exhibit very realistic gradients 
and there are no spurious structures related to varia- 
tions in the emissivity fields. We checked that the Ts 

fields around the major rivers are not contaminated by 
rapid changes in the emissivity fields. Without a first 
guess solution containing estimates of the emissivities, 
the RMS error is much larger, especially for low sur- 
face emissivities. Most of the improvement is not ex- 
pected to emanate from the surface temperature first 
guess itself: Correlation between surface temperature 
and brightness temperature is large enough to warrant a 
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good sensitivity to surface temperature variations. The 
benefit is most likely related to a good first guess in sur- 
face emissivity and the fact that the neural network can 
exploit the spectral dependence of the first guess emis- 
sivities to provide a more accurate estimate of both the 
emissivities and the surface temperature. 

4.2. Water Vapor 

WV is retrieved with a relative error of "" 30% for 

both clear and cloudy situations, when using a first 
guess. This is a small improvement over the first guess 
RMS error of 40%. The errors are not significantly dif- 
ferent in the presence of clouds. With the variational 
assimilation method [Prigent and Rossow, 1999], the 
retrieval errors were found to increase with decreas- 

ing emissivities and to increase in presence of clouds 
as expected from the sensitivity of the radiative trans- 
fer to the various parameters. As observed in Table 
2, the correlation between the brightness temperatures 
and WV is rather low (maximum of --0.6 globally), and 
the neural network scheme is likely to exploit water va- 
por correlation with another variable to extract water 
vapor information when direct correlation between Tbs 
and WV is not sufficient. It is worth mentioning that 
the neural network is trained to minimize the absolute 

WV error difference and not the relative error in WV. 

Changes could be made to minimize the relative error 
if this option was preferred. 

4.3. Cloud Liquid Water Path 

For LWP the RMS error is 0.08 kg m -2 globally, 
which is an improvement over variational assimilation 
retrieval and over few-channel methods. As expected, 
the error is larger in areas of high emissivities where 
the contrast between the land surface and the cloud 

is smaller. Even in areas of low emissivities (0.85_< 
Era2 _<0.9), the accuracy of the retrieval is not suit- 
able for detection of majority of clouds. The cloud flag 
from ISCCP is of importance in this case to direct the 
retrieval toward the appropriate neural network. How- 
ever, cloud structures with large liquid water path can 
be detected whatever the surface type; Plate I shows 
several extended and thick clouds that are also present 
on the ISCCP images (not shown). Plate I does not 
show any evidence of LWP errors (discontinuities) re- 
lated to strong emissivity gradients. 

sivity field presented on Plate I shows very consistent 
structures. The gradient between vegetated and arid 
areas is correctly retrieved, as well as specific hydrolog- 
ical structures like the Amazon or the Congo Rivers. 
The possibility of retrieving daily land surface emis- 
sivity with low RMS errors will enable an interesting 
range of studies from analysis of the effect of soil mois- 
ture or dew deposition to the postdetection of rainfall 
events (maybe even snowfall events can be recognized, 
but this idea needs further study). Detailed analysis 
and understanding of the emissivity variations will also 
benefit the microwave retrieval of WV and T profiles 
over land: until recently a fixed emissivity of 0.95 was 
used for Microwave Sounder Unit retrievals over land, 
and there is an urgent need for more accurate emissivity 
estimates [English, 1999]. 

4.5. Quality Control of the Retrieved Products 

The quality of the retrieved products can be tested 
by comparing the brightness temperatures at the in- 
put of the neural network with brightness temperatures 
that are calculated with the retrieved products as in- 
puts. Table 4 gives the RMS differences for each chan- 
nel for the two neural networks with first guess (clear 
and cloudy). The mean RMS difference for all channels 
is 0.70 for clear conditions and 0.82 for cloudy scenes. 
These differences are of the order of the noise of each 

channel (0.60 K), showing that the retrieval scheme per- 
forms well. Further investigation reveals that the errors 
are larger for cases that are infrequent in the learning 
database (large cloud liquid water content or low emis- 
sivity areas for instance). Within the learning phase 
the synaptic weights I/V (equation (9)) are calculated so 
that the neural network functions in an optimal way on 
a global basis. For cases that are underrepresented in 
the database the retrieval will not be as accurate. This 

conclusion stresses the importance of the selection of an 
adequate training database, depending on the purpose 
of the retrieval. In this study, for instance, another al- 
ternative would be to have the same accuracy in the re- 

Table 4. RMS Differences Between the SSM/I 
Brightness Temperatures at the Input of the Neu- 
ral Network and the SSM/I Brightness Temperatures 
Computed From the Retrieved Products at the End 
of the Inversion Process a 

4.4. Land Surface Emissivities 

When using a first guess, the neural network tech- 
nique shows a good aptitude for retrieving land surface 
emissivities with an RMS error lower than 0.008 (0.010) 
globally for all channels, in clear conditions (cloudy con- 
ditions, respectively). This is an improvement over the 
first guess errors. Unaided by the first guess estimate, 
the neural network technique does not perform so well. 
The first guess provides the emissivity spectral rela- 
tionship and the retrieval exploits from it. The emis- 

NN1 NN2 

Clear With Cloudy With 
First Guess First Guess 

TbSSMI 19 GHz V (K) 0.55 0.70 
TbSSMI 19 GHz H (K) 0.78 0.99 
TbSSMI 22 GHz V (K) 0.61 0.68 
TbSSMI 37 GHz V (K) 0.59 0.74 
TbSSMI 37 GHz H (K) 0.82 0.96 
TbSSMI 85 GHz V (K) 0.87 1.06 
TbSSMI 85 GHz H (K) 1.13 1.31 

aThe first guess RMS error for each input brightness 
temperature is set to 0.60 K. 



AIRES ET AL.- NEURAL INVERSION OF MICROWAVE OVER LAND 14,901 

6o ? .... 

0 
08 

-40 o• 
02 

-60 
-160 -120 -80 -40 0 40 80 120 160 

. 40 -- . - 
_ 3S 

20 -- 

-- - • 17 -20 -- Integrated ' • 13 
water vapor 

-40 -60 
-160 -120 -80 -40 0 40 80 120 160 

60 ... '-- .-,, .- 

,• O. 94 

-20 •_SSiVi ty 

-60 I I I I I i i I i I r i I' I I i I I I i I i I ] I i I i I i I i i o.eo 
-160 -120 -80 -40 0 40 80 120 •60 

80 

60 

4O 

20 

0 

-20 -- Surf ace ' 

- Terrier atur e 

-160 -120 -80 -40 0 

-- 

.., 

1'• ! • I • I • I • I • I,•,1 • I • I • I •- 
40 80 120 160 

-4O 

-60 

303 

300 

297 

294 

2gt 

288 

285 

27g 

, 276 

273 

Long i t ude 

June 11, 1993 

Plate 1. Retrieved fields (from the top to the bottom) of Ts in K, Em 19 GHz horizontal 
polarization, WV in kg m -2, and LWP in kg m -2 for June 11, 1993, from SSM/I observations 
with the F10 and Fll satellites. 



14,902 AIRES ET AL.: NEURAL INVERSION OF MICROWAVE OVER LAND 

trieval, regardless of the surface emissivity. In this case, 
instead of the natural emissivity distributions shown on 
Figure 3, uniform distributions of the emissivities would 
be chosen. Also, instead of only cloudy-clear neural net- 
works, we could have clear, cloudy (small water path), 
and cloudy (large water path) neural networks. This 
idea could be extended to precipitation cases. 

4.6. Analysis of the Neural Network 
Sensitivities 

An interesting capability of the neural network tech- 
nique is that the adjoint model of the neural network is 
directly provided [Aires et al., 1999]. The computation 
of this adjoint model (or neural Jacobians or neural sen- 
sitivities) is analytical and very fast. Since the neural 
network is nonlinear, these Jacobians are dependent on 
the situation x. For example, the neural J acobians in 
our example of (7) (a MLP network with one hidden 
layer) are 

= cr • (14) 
Oy• 

j•Si 

where a• is the derivative of the activation function cy. 

For a more complex MLP network with more hidden 
layers, there exists a back-propagation algorithm that 
efficiently computes the neural Jacobians. The neural 
J acobian concept is a very powerful tool since it allows 
for a statistical estimation of the multivariate and non- 

linear sensitivities between input and output variables 
in the model under study (F. Aires and W.B. Rossow, 
Inferring instantaneous, multivariate and nonlinear sen- 
sitivities for the analysis of feedback processes in a dy- 
namical system: Lorenz model case study, submitted to 
Journal of Atmospheric Sciences, 2000). 

Table 5 gives the mean neural J acobian values for 
the variables xk and yi for the neural network NN1 
with first guess. The neural J acobians are normalized 

by the standard deviation of the respective variables 
((Oxk/Oyi) x (std(yi)/std(xk))) to enable comparison of 
the sensitivities between variables with different varia- 

tion characteristics. These values indicate the relative 

contribution of each input in the retrieval of a given 
output parameter. The numbers correspond to global 
mean values which may mask rather different behavior 
in various regions of the globe. 

Figure 6 presents some of the normalized neural Ja- 
cobians for the surface temperature and the water va- 
por for three ranges of Em at 19 GHz H polarization. 
Depending on the surface emissivity, the sensitivity of 
Ts to different inputs changes from larger sensitivity 
to 19 GHz vertical polarization for high emissivities to 
larger sensitivity to the 85 GHz observations and the 
first guess information at low emissivities (Figure 6a). 
For WV retrieval, very different regimes are observed 
for low and high water vapor amounts (Figure 6b), from 
larger sensitivity to the 85 GHz channel horizontal po- 
larization for high water vapor amount to smaller sen- 
sitivity for low water vapor contents. The same trend 
is observed at 22 GHz. We have already commented on 
the differences between local and global correlations in 
section 3.3. In contrast to a linear regresssion-type al- 
gorithm that fits a mean state mapping between inputs 
and outputs, the neural network can adapt itself to the 
different local situations by using optimally all of the 
input parameters. This means that the neural sensitiv- 
ities are localized (depending on the situation) and are 
multivariate. The statistically normalized neural sen- 
sitivities are a multivariate and local generalization of 
the correlations between the inputs and the outputs. 

5. Concluding Remarks and 
Perspectives 

A neural network inversion scheme, including first 
guess information, is developed and applied to the re- 
trieval of atmospheric water vapor, cloud liquid water, 

Table 5. Global Mean Neural Sensitivities for NN1 (Clear Sky Condition) 

Tsurf Vap- int Era1 Era2 Era3 Era4 Era5 Era6 Era7 
Tsurf 0.17 -0.13 -0.17 -0.11 -0.16 -0.19 -0.10 -0.12 -0.06 

Vap- int -0.04 0.33 0.04 0.00 0.04 0.03 -0.02 -0.04 -0.08 
Tbl 0.21 0.18 0.58 0.02 0.47 0.13 -0.21 -0.19 -0.17 
Tb2 0.14 0.32 -0.04 0.88 -0.17 -0.38 0,09 -0.22 -0.30 
Tb3 0.09 -0.78 0.05 -0.09 0.16 -0.24 -0.09 -0.57 -0.24 
Tb4 0.21 -0.04 0.17 -0.30 0.10 0.72 0.05 0.50 -0.03 
Tb5 0.28 -0.95 -0.35 0.19 -0.26 0.04 0.79 -0.22 0.64 
Tb6 0.25 -0.20 -0.38 -0.13 -0.30 -0.09 -0.28 0.89 0.04 
Tb7 -0.21 2.30 0.03 -0.22 0.08 -0.17 -0.03 -0.21 0.36 

Era1 -0.12 0.06 0.14 0.08 0.15 0.15 0.07 0.13 0.07 
Era2 -0.12 -0.02 0.13 0.11 0.14 0.15 0.10 0.15 0.10 
Era3 -0.09 0.05 0.11 0.06 0.14 0.12 0.06 0.14 0.08 
Era4 -0.10 0.02 0.11 0.07 0.12 0.14 0.08 0.14 0.07 
Era5 -0.12 -0.05 0.12 0.10 0.14 0.16 0.11 0.16 0.12 
Era6 -0.05 -0.05 0.06 0.05 0.08 0.08 0.05 0.17 0.11 
Era7 -0.05 -0.15 0.06 0.06 0.09 0.09 0.08 0.20 0.19 
flay -0.03 0.07 0.00 0.00 -0.01 -0.01 -0.01 -0.06 -0.03 
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Figure 6. Normalized histograms of the normalized 
neural Jacobians for (a) Ts and )b) WV for different 
input variables. Results are presented for three cloud 
conditions (clear-sky, lbUUr' L•'P lower [han 0.i kg 
m -2, and higher than 0.1 kg m -2) and for three ranges 
of Em at 19 GHz horizontal polarization. In Figure 4a 
the mean values of the JacobJan are indicated for each 

subclass. In Figure 4b solid lines indicate the results for 
low WV amounts, whereas dashed lines represent large 
WV amounts. 

surface temperature, and surface emissivities over land 
from SSM/I observations. Such a neural network ap- 
proach has several similarities to the variational assim- 
ilation technique but has some advantages in both the- 
oretical and practical aspects. Although their practical 

implementation can appear very different, this study 
shows that the two techniques share very basic aspects. 
They are both statistical inversion methods (analyti- 
cal inversion methods could not deal with uncertainties 

in the inputs, and the physical models to invert in re- 
mote sensing are generally too complex) that minimize 
a quality criterion, using a priori first guess informa- 
tion and a radiative transfer (physical) model (Table 1). 
Theoretical advantages of the neural network scheme 
include its ability to perform a global inversion and to 
handle high nonlinearity and non-Gaussian variables. 
Only limited a priori hypotheses are required, which 
is why this technique is so flexible. This flexibility al- 
lows the neural network to exploit complex relationships 
among the observations and among the retrieved quan- 
tities that can vary with situation. Furthermore, the 
radiative transfer calculations are only needed once to 
generate the training data set. Even this is not needed 
if colocated and coincident in situ measurements are 

available, but this approach, which is like a traditional 
empirical analysis, cannot be generalized outside the 
observed variability of the data set. In principle, our 
model-based approach can be general. In application, 
inversion of new observations only involves simple and 
rapid calculations of two matrix products and one pass 
through the logistic function a of the neural network 
(equation (7)). When processing large volumes of global 
observations, this is a very important asset compared to 
the variational assimilation. On the other hand, vari- 
ational assimilation techniques have been designed to 
handle two-, three- and four-dimensional data (the 2-, 
3- or 4-D-Var assimilation schemes used in Numerical 

Weather Prediction), a possibility that has not yet been 
investigated with neural network techniques. 

In this study, we have developed a neural network 
scheme that includes first guess information. Its poten- 
tial has been tested in the complex and ill-conditioned 
problem of inversion of SSM/I microwave observations 
over land. A database to train the neural network is de- 

rived from a global collection of coincident surface and 
atmospheric parameters, extracted from the N CEP re- 
analysis, from the ISCCP data, and from microwave 
emissivity atlases previously calculated. The introduc- 
tion of the first guess information into the neural net- 
work ha,s a, considerable impact on the results compared 
to the network without first guess. 

The theoretical RMS error of the surface temperature 
retrieval is 1.3 K in clear-sky conditions and 1.6 K in 
cloudy scenes over the globe. Microwave land surface 
temperature retrieval presents a very attractive com- 
plement to the infrared estimates in cloudy areas. By 
combining both measurements as we have done, a com- 
plete (clear and cloudy days) time record of land surface 
temperature can be produced. Water vapor is retrieved 
with a theoretical RMS error of 3.8 kg m -2 in clear 
conditions and 4.9 kg m -2 in cloudy situations. The 
theoretical RMS error in liquid water path is 0.08 kg 
m -2. The surface emissivities are retrieved with an ac- 
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curacy of better than 0.008 in clear conditions and 0.010 
in cloudy conditions, both improvements on the original 
first guess. 

Validation of the retreived variables is on the way, 
using independent measurements. Validation of the 
surface skin temperature is a particularly challenging 
task. The surface skin temperature is not a routinely 
measured variable. Only the surface air temperature 
is available from in situ measurements and differences 

between surface skin and surface air temperatures are 
a complex function of the surface characteristics, the 
local time, and the solar flux 

The analysis methodology presented here and com- 
pared to the better-known variational assimilation tech- 
nique provides an illustration of a more general ap- 
proach to the analysis of high-volume, multiwavelength 
satellite observations that may have great potential. 
The common practice of isolating one variable at a time 
from such data sets breaks correlations among the mea- 
surements and among the retrieved quantities. The 
variational assimilation approach goes a step further 
by obtaining simultaneous retrievals of many quantities 
from multiple measurements; however, as usually im- 
plemented, the variational assimilation still does not ac- 
count for correlations of variables. The neural network 

approach is not only able to accommodate strongly 
nonlinear relationships but also is able to benefit from 
the correlations to improve the retrievals. The neural 
network approach also requires much less computation 
than the variational assimilation approach. That the 
two methods are conceptually close, as we have shown, 
puts the neural network approach on the same theo- 
retical foundation as the better-studied variational as- 

similation methods. However, the fact that a simple 
neural network has been shown to provide a statistical 
fit to any function suggests that what the trained net- 
work is doing is simulating (statistically) the equations 
of the physical model, in this case an inverse radiative 
transfer model. Thus, despite use of statistical meth- 
ods, the analysis represents a physical model of the re- 
lationship of the observations and physical quantities. 
Consequently, the quality of the results depends on two 
key factors: the accuracy of the physical model used to 
calculate the training data set (note that model errors 
can be accounted for in the retrieval design) and the 
completeness of the sample of parameter correlations 
represented by the training data set. 

The introduction of first guess information into a neu- 
ral network scheme is expected to improve applications 
of this technique and to promote new developments, as 
a possible alternative to variational assimilation meth- 
ods, for inversion of geophysical satellite observations 
for a broad range of applications. Another particularly 
interesting feature of the neural network technique is 
its ability to merge information coming from different 
instruments. This feature of neural networks has been 

used, for example, by Prigent et el. [2001]. This strat- 
egy would be an excellent way to use the synergy of 

all instruments in such missions as Tropical Rainfall 
Measurement Mission or in the next generation Earth 
Observing Satellite satellites. 

Appendix A: One-Dimensional 
Variational Assimilation Scheme 

This method is described by Rodgers [1976] and by 
Eyre [1989]. The unified notation of Ide et el. [1997] is 
adopted. Depending on the approach used to derive the 
inversion formula, the technique has many names: mini- 
mum variance method, least squares fitting, best linear 
unbiased estimator, variational assimilation, expecta- 
tion maximization, or maximum probability estimator. 
All these techniques make the same assumptions (local 
linearization of the physical model, Gaussian distribu- 
tions of the variables) so the resulting formulae are the 
same for each technique. 

The Bayesian estimator associated with the Newto- 
nian optimization algorithm is adopted with first guess 
(or background, in the variational assimilation termi- 
nology) information. First, we assume that a current 
estimate Xn of the geophysical parameters to be re- 
trieved exists, and we compute the next estimate Xn+•, 
x0 being the first guess x b. The Newtonian method con- 
sists of expanding the modeled observation vector y as 
a Taylor series about the present value x•: 

= + - (AI) 

with H(x) representing the partial derivatives of y(x) 
with respect to the elements of x. In a linear inver- 
sion approach this linearization of the physical model 
equation is done only once about the first guess x b and 
there are no iterations. The nonlinear approach of the 
Newtonian optimization algorithm consists in lineariz- 
ing about the estimate Xn, which is improved at each 
optimization step n. This assumes that the first guess 
x0 - x • is sufficiently close to the true solution in order 
to avoid local minima. A bad first guess can result in 
an inaccurate solution. 

The regression of x given yO and x ø, 

x ?(xly ø xo)•tyø•tx •, (A2) 

is equivalent to the maximum likelihood estimator x 
that maximizes 

•(•ly ø •), (^a) 

the conditional probability of vector x given measure- 
ment yO and first guess x ø. Let 5 be a estimation of the 
physical variables. For all measurements yO, 

= [(z - ø + z[ly ø ø 

= _ + 
_ xO]. 
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The regression is also the best unbiased estimator in the 
least squares sense. 

Using the product rule, we can rewrite the conditional 
probability in (A3) as 

P(xly o x, ) _ P(x, yo, x _ p(yo x, lx)P(x) (A5) 
' 

which is nothing else than the Bayes theorem [Loredo, 
1990]. It is often assumed, even if it is not always the 
case, that yO and x b, the direct and virtual (first guess) 
measurements, are independent. In that case, we can 
expand the corresponding joint probability distribution 
functions using the product rule 

r(ly ø (yO p(yo)p(xb ) . (A6) 
We want to maximize this probability with respect to 
x. If the probability distribution P(x) of the physical 
variables x is available, it is possible to use it in the 
general context of Bayesian estimation. If this pdf is 
Gaussian, this would correspond to the addition of a 
term •-d•[x-•]•/•-• [x- •] in (A8), where • is the mean 
state of the physical variables and /) is the covariance 
matrix of the physical variables. This approach is not 
used in general in variational assimilation. 

If no a priori information on the distribution P(x) is 
available, this distribution is considered to be uniformly 
distributed (i.e., no information), so this term can be 
neglected during the maximization process. The two 
probabilities p(yo) and P(x •) are not dependent on x 
so they can also be neglected. The maximum likelihood 
estimator is then obtained at the minimum of minus 

the log of the two remaining probabilities. Assuming 
that the minimum is unique, the optimal solution is 
characterized by 

_ a log [p(yolx)P(xb Ix)]: o. (A7) 
Ox 

These probabilities need to be rewritten in order to 
extract the independent random variables involved in 
the model. Note P(yølx ) = P(yø[y(x)) since the the- 
oretical radiative transfer function y is not a stochas- 
tic function. So P(yø[x) = Pv(y ø- y), where Pv is 
the probability distribution function of the instrumen- 
tal noise and the forward model error. Furthermore, 
P(yø[x) = Pv[H(x•)(x - x,•) + (y(x•) - yO)] using re- 
lation (A1). Also P(x•lx) = P,(x • - x) where h is the 
probability distribution function of the first guess error 

Assuming that the errors in the observations, the di- 
rect radiative transfer model, and the a priori first guess 
information are unbiased, uncorrelated, and have Gaus- 
sian distributions, expression (A7) is equivalent to 
0 -- •xx[H(xn)(x - Xn)q- (y(xn) - yø)]t(E q- F) -1 

0 [H(xn)(x-xn)+(y(xn)-yø)]+•xx -], 
(AS) 

where B is the first guess error covariance matrix < 
(x - xb) ß (x - xb) t > (estimated with a data set of cou- 
ples (Xe,Xbe),e = 1,...,N); E is the observation error 
covariance matrix; and the covariance matrix F repre- 
sents the radiative transfer model errors. We recognize 
in the first term of this criterion a Mahalanobis distance 

between y(x) and yO introduced in (2) and (3). 
Relation (A8) is equivalent to 

•:• H(xn)t(E + F)-•[H(xn)(X - Xn) + (y(Xn) -- yO)] 

+B-•[x - x *] = 0. (A9) 
We then expand the last term involving the first guess 
information by introducing the variable Xn, 

•;> H(xn)t(E q- F)-i[H(xn)(X - Xn) q- (y(Xn) -- yO)] 

q-B-l[2: - 2:n] q- B-l[jrn - x b] - 0 (A10) 

• [n(xn)t(E + F)-ln(xn) + B-1][x - 

= _[n(xn)t(E + F)-l(y(xn) _ yO) + s-l[•n _ •b]]. 
(All) 

Finally, the optimization steps for defining the maxi- 
mum likelihood estimator are of the form 

2:n+ 1 -- 2: n --[H(xn)t(E + F)-iH(xn) + B-l] -1 

t (E + F) (y(xn) - yO) + s-l[jrn _ 2:b]], (A12) 

and the error covariance of the nth step is given by 

A(gcn) - (S -1 q- H(gcn)T(s q- F)-lH(2:n)) -1. (A13) 

Matrix A(xn) is a theoretical estimate of the error co- 
variance of the solution at step n [Rodgers, 1976]. For 
the final vector • and the corresponding H(•), the ma- 
trix A is not a measure of the absolute accuracy of 
the retrieval but an estimate of the error covariance of 

the retrieval, valid if all assumptions made for formula 
(A12) are valid. Within the iterative process, some of 
the geophysical variables to be retrieved are generally 
constrained to physically meaningful values (essentially, 
they should not turn negative in our case). 

In the retrieval process, the balance between the in- 
formation coming from the virtual (first guess) and the 
direct measurements is implicitly controlled by the co- 

two pieces of information. If these matrices are not 
sufficiently precise, or if the variability of the matrices 
with atmospheric situations is not sufficiently sampled, 
an "empirical" weight has to be determined. 

Notation 

x b 

.•n 

vector of physical variables to retrieve. 
estimate of x. 

first guess a priori information for x. 
nth estimate of x in variational assimilation 
method. 

-- x b - x, first guess error. 
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y(x) 

yO 

?,(e) 

4(x) 

E 

F 

E[-] 
ai 

o' 

zi 

wij 

gw 

W 

Yi 

D 

DE 

(w) 

(w) 

c(w) 

radiative transfer function for the physical vari- 
able x (also a vector). 
SSM/I brightness temperature observations. 
SSM/I instrumental noise. 
generic probability measure. 
probability distribution function of 
probability distribution function of e. 
derivative of y with respect to x. 
covariance matrix of retrieval error estimates in 

variational assimilation method. 

=( et. e •, covariance matrix of the first guess 
errors. 

-( r/t . •1 •, covariance matrix of the measure- 
ment errors. 

covariance matrix of the radiative transfer model 
errors. 

expectation operator. 
activity of neuron i. 
sigmoid function of the neural network. 
output of the neuron i. 
synaptic weight between neuron i and neuron j. 
neural network model, or transfer function for 
our application. 
•- (Wij}, the set of the parameters of the neural 
network. 

neural network input value on neuron i. 
neural network output value on neuron k. 
data set sampling the probability distribution 
functions. 

generic distance. 
Euclidean distance. 

theoretical quality criterion for classical neural 
network learning phase. 
practical quality criterion for classical neural net- 
work learning phase. 
theoretical quality criterion for classical neu- 
ral network learning phase with first guess 
information. 

practical quality criterion for classical neural net- 
work learning phase with first guess information. 
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