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ABSTRACT

In this paper, a fast atmospheric and surface temperature retrieval algorithm is developed for the high-resolution
Infrared Atmospheric Sounding Interferometer (IASI) spaceborne instrument. This algorithm is constructed on
the basis of a neural network technique that has been regularized by introduction of information about the
solution of the problem that is in addition to the information contained in the problem (a priori information).
The performance of the resulting fast and accurate inverse radiative transfer model is presented for a large
diversified dataset of radiosonde atmospheres that includes rare events. Two configurations are considered: a
tropical-airmass specialized scheme and an all-airmasses scheme. The surface temperature for tropical situations
yields an rms error of 0.4 K for instantaneous retrievals. Results for atmospheric temperature profile retrievals
are close to the specifications of the World Meteorological Organization, namely, 1-K rms error for the instan-
taneous temperature retrieval with 1-km vertical resolution.

1. Introduction

The Infrared Atmospheric Sounding Interferometer
(IASI) is a high-resolution (0.25 cm21) Fourier trans-
form spectrometer scheduled for flight in 2005 on the
European polar Meteorological Operational Platform
(METEOP-1) satellite funded by the European Orga-
nization for the Exploitation of Meteorological Satellites
(EUMETSAT) and the European Space Agency member
states. This instrument is intended to replace the High-
resolution Infrared Radiation Sounder (HIRS) as the op-
erational infrared sounder and is expected to reach ac-
curacies of 1 K in temperature and 10% in water vapor
with vertical resolutions of 1 and 2 km, respectively.
IASI, jointly developed by the Centre National d’Études
Spatiales (CNES) and EUMETSAT, provides spectral
coverage from 3.5 to 15.5 mm at considerably higher
spectral resolution than that of HIRS and, together with
the Advanced Microwave Sounding Unit (AMSU), is
expected to lead to dramatic improvements in the ac-
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curacy and height resolution of remotely sensed tem-
perature and humidity profiles and ozone amount.

The goal of this study is to present an inversion al-
gorithm that retrieves geophysical variables from IASI
measurements. We are confronted, in this work, with
problems related to the ill-posed character of the inverse
problem, the sensitivity to noise and, specific to IASI,
the data dimension. The multilayer perceptron (MLP)
technique is particularly interesting to solve this kind
of problem. Such an approach has already been devel-
oped by the Atmospheric Radiation Analysis (ARA)
group of Laboratoire de Météorologie Dynamique for
HIRS coupled with the Microwave Sounding Unit
(MSU; Escobar et al. 1993), for the Special Sensor Mi-
crowave Temperature Sounder and Water Vapor Profiler
(SSM/T-1) instrument on the Defense Meteorological
Satellite Program satellites (Rieu et al. 1996), and even
for the high-resolution infrared spectrometer known as
the Advanced Infrared Radiation Sounder (AIRS) of the
National Aeronautics and Space Administration for the
coming Earth Observation System Aqua satellite (Es-
cobar et al. 1993) or for the IASI instrument (Aires et
al. 1998). The great advantages of MLP are the rapidity,
the small amount of memory required, and accuracy of
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results (Aires 1999). The MLP model is nonlinear,
which is a crucial point for the regression fit to the
inverse radiative transfer equation (RTE). Furthermore,
assumptions such as the linearity of the RTE or the
Gaussian assumption for stochastic variables are not re-
quired for MLP.

In this paper, it is demonstrated that the inversion
procedure may be regularized by introducing various
kinds of outside information about the physical problem
to the neural method. This approach may be achieved
within the three components of the neural network tech-
nique: the architecture of the network, the learning al-
gorithm, and the learning database.

We present here an application to the problem of sur-
face temperature and the atmospheric temperature pro-
file retrievals with IASI. Previous studies have used
information content analysis to estimate the expected
retrieval errors for IASI (Amato and Serio 1997; Prunet
et al. 1998), but this kind of estimate is dependent on
some assumptions (Gaussian hypothesis; independence
of first guess and observation; first-guess error covari-
ance matrices often taken to be diagonal, i.e., no cor-
relations among the first-guess errors of the variables;
etc.) and on the limited number of atmospheric situa-
tions that have been examined.

Our neural network model is trained and tested using
a large number, 3500, of real atmospheric situations as
measured by radiosondes, taken from the Thermody-
namic Initial-Guess Retrieval (TIGR) database (Chédin
et al. 1985; Achard 1991; Escobar 1993; Chevallier et
al. 1998, 2000). These atmospheric situations include
very complex temperature profiles that are often much
more irregular than either reanalysis data or model out-
put data. Rare situations are also included so that the
dataset represents, as much as possible, all kinds of
possible atmospheric situations (initially for a pattern-
recognition purpose). This complexity represents a high-
er variability than that encountered in operational con-
ditions with model output data, so our estimation of the
retrieval errors could be an overestimate. The use of a
large and complex climatological dataset allows the in-
version model to be calibrated globally and even for
rare events. Furthermore, our analysis of the retrieval
error is made for realistic instrumental noise conditions.
Contrary to other approaches, no assumptions about the
physical problem, such as the linear or the Gaussian
assumptions, are used.

This paper is organized as follows. The physical prob-
lem associated with our application is presented in sec-
tion 2. The neural network approach is described in
section 3. The databases used in this study are presented
in section 4. Two applications of our neural technique
are then presented: the surface temperature retrieval
(section 5) and the atmospheric temperature profile re-
trieval (section 6). Conclusions and perspectives are giv-
en in section 7.

2. Sounding the atmosphere with the IASI
instrument

a. Radiative transfer in the atmosphere

The radiance measured by an instrument at the top
of the atmosphere depends on the atmospheric and sur-
face physical properties. This dependence is described
by the RTE:

I(n) 5 « B(T , n)ts s sn

Ptop ]tn1 B[T(P), n] (P) d lnP, (1)E ] lnPPs

where n is the wavenumber (cm21); «s is the earth’s
surface emissivity, which may be a function of wave-
number; B[T(P), n] is the Planck function, which in-
dicates the radiance emitted by a blackbody at temper-
ature T and atmospheric pressure P; and tn is the at-
mospheric transmission between the satellite and the
pressure level P. Also, ] tn/] lnP is termed the weighting
function since, as is seen in Eq. (1), it weights the Planck
radiance contribution to the column radiance.

To retrieve atmospheric profile variables from radi-
ative measurements at the top of the atmosphere, the
inverse of Eq. (1) has to be solved. The analytical in-
version of this equation is not possible; only an infer-
ence approach can be used (Twomey 1977). Contrary
to the direct problem, which advantageously may be
estimated with high precision by a physical algorithm,
the inverse problem needs a method of resolution based
on a statistical representation of the (unknown) inverse
equation. Two general approaches exist: using an in-
version scheme for each observation (we call this ap-
proach the local inversion) or modeling the inverse RTE
once and for all (we call this approach the global in-
version). The local inversion generally requires a good
initial guess to constrain the solution and a rapid and
accurate direct transfer model (Rodgers 1976). Even if
global inversion models use a first guess (Aires et al.
2001), this is not required, and no direct model is re-
quired during operational use. Although global inver-
sion does not have these two limitations, it is a more
ambitious problem.

b. Instrumental characteristics

There are two major advances of the IASI instrument.
First is the dramatically increased number of spectral
channels: for each field of view, 8461 measures are
available, covering the spectral range from 645 to 2760
cm21 with a resolution (unapodized) of 0.25 cm21, with
hundreds of them sounding the atmospheric tempera-
ture. The retrieval becomes an overconstrained problem
(more observations than degrees of freedom). Second,
the resolving power is increased: with IASI the resolv-
ing power is about l/dl of 1200, where l is wavelength.
The resolving power of the Television and Infrared Ob-
servation Satellite—Next Generation (TIROS-N) Ob-
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TABLE 1. NEDT noise characteristics of IASI at 280 K.

n (cm21)
NEDT

(K) n (cm21)
NEDT

(K)

650
770
790
980

1000
1070
1080
1200
1210
1650

0.28
0.28
0.34
0.34
0.28
0.28
0.34
0.34
0.28
0.28

1660
2090
2100
2420
2430
2500
2600
2700
2760

0.34
0.5
0.5
0.5
0.6
0.77
1.1
1.58
1.97

FIG. 1. Standard deviation of IASI instrument noise for different brightness temperature
measurements T 9.

servational Vertical Sounding (TOVS) radiometer is
presently between 50 and 100.

The IASI noise is simulated (Cayla et al. 1995) by a
white Gaussian noise (this is a realistic assumption for
interferometers) with a noise equivalent temperature
(NEDT) at 280 K (Table 1). NEDT at 280 K represents
the standard deviation st280(n) of the Gaussian noise for
a given wavenumber n. At a different scene brightness
temperature T9, the standard deviation stT 9(n) of the
Gaussian noise is computed by

]B(Tb 5 280, n)

]Tb
st (n) 5 st (n), (2)T9 280]B(Tb 5 T9)

]Tb

which shows that the noise level increases as T9 de-
creases. Figure 1 illustrates the standard deviation of
noise at different T9. It is expected that these charac-

teristics are an overestimation of the actual noise level
for the instrument. Figure 2 shows the IASI spectrum
averaged over the TIGR dataset with the corresponding
noise standard deviation spectrum. Note that some spec-
tral regions could have a noise standard deviation larger
than 2 K on average.

There are four fields-of-view for each IASI sample,
covering an area with a diameter of 9–12 km at nadir.
Assuming homogeneous meteorological conditions, an
average of the four pixel measures can be used to perform
the retrievals: these four fields-of-view provide redundant
measurements that can be averaged to reduce noise.

3. The neural network inversion approach

Various neural inversion techniques have been de-
veloped, such as the ‘‘iterative inversion’’ (Kindermann
and Linden 1990), the ‘‘distal learning’’ (Jordan and
Rumelhart 1992), or the distal learning optimized by a
Monte Carlo algorithm (Hidalgo and Gómez-Treviño
1996). We have chosen to use the ‘‘direct inversion’’
approach for two reasons: it performs a global inversion
and it is possible to introduce ‘‘a priori’’ information
into the method. The a priori knowledge is any infor-
mation about the solution of the problem that is in ad-
dition to the information contained in the observations.
In usual statistical techniques (such as regression), over-
coming the ‘‘black box’’ modeling conception (no as-
sumptions about the physical problem) improves results.
Therefore, we have combined three approaches: the
structural stabilization of the network, regularization of
the learning algorithm by the input perturbation tech-
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FIG. 2. (left) Mean IASI spectrum and (right) corresponding standard deviation of IASI instrumental noise.

FIG. 3. Architecture of an MLP neural network with L layers, with inputs X and outputs Y.

nique, and a physically optimized feature selection pro-
cess in the IASI data. Our numerical experiments have
shown that the introduction of this kind of a priori in-
formation is very useful and makes training possible
with relatively few data.

a. Global inversion

In the direct inversion technique, an MLP neural net-
work is used to estimate directly the mapping between
the IASI observations and retrieved geophysical vari-
ables. In effect, the ‘‘trained’’ MLP is a statistical model
of the inverse RTE, providing once and for all a global
inversion. The learning algorithm (the more expensive
computational part) is performed offline only once.
Then, the application of the neural network model for
the inversion of IASI observations is quasi immediate
in the operational stage: no regressions and no Jacobian
computations are required.

Another advantage over classical physico-statistical
techniques is that a good initial condition for the in-
version is not needed. Moreover, the required memory
storage is very small. There is also no need for a rapid

direct model (necessary in iterative inversion algo-
rithms) in which the speed is usually obtained by lin-
earizing the RTE and assuming uncorrelated Gaussian
errors.

b. MLP and structural stabilization of the
architecture

The MLP network is a mapping model composed of
parallel processors called ‘‘neurons.’’ These processors
are organized in distinct layers: the first layer (number
0) represents the input X 5 (xi; 0 # i # m0) of the
mapping, where m0 is the number of neurons in layer
0. The last layer (number L) represents the output of
the mapping Y 5 (yk; 0 # k # mL). The intermediate
layers (0 , m , L) are called the ‘‘hidden layers.’’
These layers are connected via neuronal links (Fig. 3):
two neurons i and j between two consecutive layers have
synaptic connections associated with a synaptic weight
vij (we pose W as the set of all synaptic weights v ij).
A neuron executes two simple operations: first, it makes
a weighted sum of the inputs and then transfers this
signal to its output through a so-called transfer or ac-
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tivation function such as s(a) 5 tanh(a). The neuron j
of a hidden-layer has an output zj given by zj 5
s( v ljzl). For regression problems, the output unitsm0Sl50

generally have a transfer function that is identity. For
example, in a one-hidden-layer MLP, the kth output yk

of the network is defined as

y (y) 5 v s (a ) 5 v s v x , (3)O O Ok jk j jk ij i1 2j∈S j∈S i∈S1 1 0

where s is the sigmoid function, aj is the activity of
neuron j, and Si is the ith layer of the network (with i
5 0 for the input layer). We have deliberately omitted
the usual bias term in this formula to simplify notation.
It has been demonstrated (Hornik et al. 1989; Cybenko
1989) that any continuous function may be represented
by a one-hidden-layer MLP.

The neuron acts, in its entire input space, as a ‘‘fuzzy’’
linear discriminant: a neuron j cuts its input space into
two half subspaces separated by a plane orthogonal to
the vector of its input weights {vlj; l ∈ Inputs( j)}. On
one side of the ‘‘decision boundary’’ the response of the
neuron is 0, on the other side the response is 1, and in
the fuzzy region the response of the neuron is quasi linear
(corresponding to the approximately linear part of the
transfer function). So, the MLP network, like linear re-
gression, is adapted very well to high-dimensional data
because its neurons act in the entire data space and not
in a partition of this space as with some methods (radial
basis function, splines interpolators, etc.).

How is the neural network structure defined? First,
the number of inputs and outputs in the neural network
is fixed entirely by the problem.

Second, the number of layers has to be defined. It has
been demonstrated theoretically (Sontag 1992) that any
inverse problem may be resolved by a two-hidden-layer
MLP network because such neural networks can take
into account discontinuities and extremely nonlinear
variations (often present in inverse problems), in con-
trast to one-hidden-layer MLPs that approximate con-
tinuous functions. In practice, the answer is different.
We have observed in our experiments that, with noise-
corrupted data, a one-hidden-layer network may be suf-
ficient. Furthermore, our experiments show that smooth
solutions are obtained using just one hidden layer. This
limitation in the number of hidden layers is a structural
stabilization of the solution. The resulting reduction of
the number of free parameters (the synaptic weights W)
regularizes the neural estimation, producing a functional
equivalence between the desired function (the inverse
of the RTE) and its estimation (the trained neural net-
work). Because we have noisy observations and rela-
tively smooth behavior of the functions (we prefer
smooth retrieved profiles over irregular ones), it is nec-
essary to regularize the inverse problem. One way is to
constrain the solution to be smooth (this kind of reg-
ularization is used also in ridge regression or in varia-

tional assimilation); we use a one-hidden-layer network
to accomplish this smoothness.

Third, the user has to specify the number of neurons
in the hidden layer. The more neurons in the hidden
layer, the better is the fit to the learning dataset. How-
ever, the learning fit error is not a good criterion to
constrain the neural architecture because having too
many neurons produces the overfitting problem: the
network fits the learning dataset very well but is bad
for generalization (i.e., the fit error on an independent
dataset of observations is large). For too few neurons
in the hidden layer, the generalization of the neural
network is insufficient because of the lack of com-
plexity of the neural architecture to represent the de-
sired model (i.e., bias error). For too many neurons,
the complexity of the neural network is too rich when
compared with the desired model, and the overfitting
problem appears (i.e., variance error). This dilemma is
called bias–variance dilemma (Geman et al. 1992).
Thus, the number of neurons in the hidden layer can
be estimated by a heuristic procedure that monitors the
generalization fit errors of the neural network as the
configuration is varied: we vary the number of neurons
in the hidden layer until the smallest generalization
error is found.

c. Learning algorithm and regularization by input
perturbation

Given an architecture (number of layers, input and
output nodes, and interconnections), all the information
for the network is contained in the weights W. The learn-
ing algorithm is the optimization technique that esti-
mates the optimal network parameters W 5 {vij} by
minimizing a loss function C(W) so that the neural map-
ping approaches as closely as possible the desired func-
tion. The most frequently used criterion to adjust W is
the mean-square error in network outputs:

mL1
2C(W) 5 [y (x; W) 2 t ] P(t zx)P(x) dt dx,O EE k k k k2 k51

(4)

with tk the kth desired output component, yk the kth
neural output component, and P(x) the probability den-
sity function of input data x. In practice, C(W) is ap-
proximated by

N1
2C(W ) 5 [y (x; v) 2 t ] . (5)O k k2N e51

The error back-propagation algorithm (Rumelhart et
al. 1986) is used to minimize C(W). It is a stochastic
steepest-descent method very well adapted to this neural
architecture because the computational cost is linearly
related to the number of parameters.

To reduce the estimation sensitivity to input noise in
the data, we use the input perturbation (IP) technique.
It is a heuristic method to control the effective com-
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plexity of the neural network mapping. The technique
consists, during the learning step, of adding to each
input a random vector representing the instrumental
noise. It has been demonstrated (Bishop 1996) that, un-

der certain conditions (low noise assumption), training
with noise is closely related to regularization (or
smoothing) technique. In the IP method, the usual error
function C(W) [Eq. (4)] takes the form

mL1
2C̃(W ) 5 [y (x 1 h; W ) 2 t ] P(t zx)P(x)P(h) dt dx dh. (6)O EEE k k k k2 k51

If the noise h is sufficiently small, we may expand the
network function yk(x 1 h; v) to first order. Then, we
obtain the relationship

C̃(W) . C(W) 1 nV(W), (7)

where n is the noise variance, and

2m m0 L1 ]ykV(W ) 5 P(x) dx (8)O O E 1 22 ]xi51 k51 i

is a Tikhonov penalty term (i.e., stabilizer) that avoids
solutions with high gradients (rapid variations of the
neural function). So, the minimization of this new cri-
terion C(W) constrains the solutions to be smooth. This
regularization technique limits the number of degrees
of freedom in the neural network to bring its complexity
nearer to the desired function. This limitation reduces
the class of possible solutions and makes the solution
of the problem unique.

d. Feature selection for dimension reduction

An MLP neural network can, in principle, be used to
map any input vector space to any output vector space;
however, in practice, the data representation signifi-
cantly affects the quality of the final results. In partic-
ular, care must be exercised to avoid an overemphasis
on the noise component. Dimension reduction tech-
niques may be used to present not only a more compact
representation but also more pertinent information to
the input of the neural network.

The ‘‘curse of dimensionality’’ stipulates that it is
hard to apply a statistical technique to high-dimension-
space data. We have seen in section 3b that the MLP is
a well-adapted technique in this kind of problem, but
practical problems still occur for high-dimensional data;
for example, the number of parameters (the weights W
in the MLP neural network) increases with the number
of inputs. This can allow excessive of degrees of free-
dom in the neural interpolator, which, when combined
with the introduction of noninformative data (i.e., noise
or spectral information nonrelated to retrieved quanti-
ties), may distort the learning process: the quality cri-
terion is more difficult to minimize and the computa-
tions are longer.

Thus, the goal of dimension reduction is to present
to the neural network the most relevant information

from initial raw data (i.e., noisy physical measure-
ments). There exist two ways to reduce the dimension-
ality of the input data (Jain and Zongker 1997): feature
extraction (a transformation, linear or not, of raw data)
and feature selection (selection of specific channels in
input data; Bishop 1996). Feature selection is chosen
here (Rabier et al. 2001). For the retrieval of one geo-
physical variable, we select channels that are, as far as
possible, uniquely sensitive to this one atmospheric pa-
rameter. By studying the RTE Jacobians (derivatives of
the transmittances with respect to each geophysical pa-
rameter), it is possible to analyze mutual information
between measured brightness temperatures and geo-
physical variables (Chéruy et al. 1993). However, we
need to make a compromise between reducing data di-
mensionality and preserving the redundant information
in the raw data to alleviate the effects of noise.

4. Radiosonde-based learning and test datasets

a. Construction of an IASI learning dataset: The
TIGR database

We use in our application the three TIGR databases
of the ARA group: TIGR1 (861 atmospheres; Chédin
et al. 1985), its 1990 revised version TIGR2 (1761 at-
mospheres: 322 in tropical air mass, 388 in midlatitude
type 1, 354 in midlatitude type 2, 104 in polar type 1,
and 593 in polar type 2; Achard 1991; Escobar et al.
1993), and its 1997 extended version TIGR3 (2311 at-
mospheres: same as TIGR2 but with an extended trop-
ical air mass of 872 atmospheres; Chevallier et al. 1998).
All of these datasets are constituted from more than
150 000 radiosonde measurements, sampled for their di-
versity and described by their temperature and gas con-
centration profiles with a discretization of the atmo-
sphere into 40 layers (see Table 2). The sample includes
a large number of rare events. The final database is
composed of 3494 complex atmospheres. The minimum
and maximum envelopes of the TIGR3 atmospheric
temperature profiles are represented in Fig. 4 to illustrate
the large range of variability that the radiosonde mea-
surements represent. Not only is the range of variability
extreme, but also inversion in the vertical profiles can
produce complicated structures that are very challenging
to all retrieval methods.

The Automatized Atmospheric Absorption Atlas (4A)
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TABLE 2. The 40 pressure levels of the 4A algorithm.

Level
Pressure

(hPa)
Altitude

(km) Level
Pressure

(hPa)
Altitude

(km)

1
2
3
4
5

0.05
0.09
0.17
0.30
0.55

68.4
64.3
59.9
56.0
51.8

21
22
23
24
25

131.20
161.99
200.00
222.65
247.90

14.1
12.6
11.1
10.4

9.7
6
7
8
9

10

1.00
1.50
2.23
3.33
4.98

47.7
44.9
42.2
39.4
36.6

26
27
28
29
30

275.95
307.20
341.99
380.73
423.85

8.9
8.2
7.4
6.7
6.0

11
12
13
14
15

7.43
11.11
16.60
24.79
37.04

33.9
31.1
28.3
25.6
22.8

31
32
33
34
35

471.86
525.00
584.80
651.04
724.73

5.2
4.5
3.7
3.0
2.3

16
17
18
19
20

45.73
56.46
69.71
86.07

106.27

21.3
19.9
18.4
17.0
15.5

36
37
38
39
40

800.00
848.69
900.33
955.12

1013.00

1.6
1.2
0.8
0.4
0.0

line-by-line forward radiative transfer algorithm (Scott
and Chédin 1981; Tournier 1994) has been used to com-
pute the IASI brightness temperatures associated with
these 3494 atmospheres for clear conditions over the sea.
The 4A algorithm allows for an analytical computation
of the physical Jacobians (Chéruy et al. 1995). An illus-
tration of such Jacobians versus pressure is given in Fig.
5 for the spectral region 650–800 cm21 (15.5–12.5 mm).
The vertical integration of the atmospheric information
is illustrated in Fig. 6 in which Jacobians for six wav-
enumbers in the 15.5–12.5-mm spectral region are shown.
Channels with a limited extent (mostly in the lower at-
mosphere), in terms of vertical resolution, provide more
precise information than the others (in the top of the
atmosphere) because a flat Jacobian indicates ambiguities
in the retrieved profile. The spacing of the peaks is also
important to reduce ambiguities. The concept of vertical
resolution depends on both the width and the spacing of
the channel’s Jacobians (Rodgers 1990).

b. Improved representation of the surface
temperature in TIGR

In the current TIGR database, the surface temperature
Ts has been set equal to the temperature of the 40th
(lowest) atmospheric level T40. This does not represent
the actual situation, especially over land, where the sur-
face skin temperature can differ significantly from the
near-surface air temperature in systematic ways with
time of day, latitude, season, and location (e.g., Rossow
et al. 1989). For a better representation, we statistically
generate, for each atmosphere, a set of 10 different Ts
using the T40 information, based on the statistical dis-
tribution (i.e., mean and standard deviation) of T40 2
Ts in a database of 150 000 radiosonde measurements.
Thus, for every atmosphere, knowing T40, we choose

randomly 10 Ts with the estimated density probability.
For example, in the tropical air mass, we obtain a Ts
database of 3220 atmospheres (322 3 10).

5. Surface temperature retrieval

This study is limited to clear-sky oceanic situations
and to the tropical airmass case, and emissivity is set
equal to 1.0; Ts in the tropical air mass is very important
to climatological analyses.

a. Jacobian-based channel selection

There are two spectral regions sensitive to the surface
characteristics in the IASI spectral domain: 12.5–10.2
mm (.800–980 cm21) and 4.0–3.6 mm (.2500–2750
cm21). Note that the second spectral region may be
contaminated by solar radiation during the day. How-
ever, in these regions, some wavelengths are contami-
nated by other atmospheric constituents. To eliminate
the corrupted channels and to reduce the dimensionality
(as explained in section 3d), we use a channel selection
process based upon an analysis of the wavelength sen-
sitivity of radiance to Ts variations. We define sensitivity
as the mean variation I(n) for 1-K change of Ts [see
Eq. (1)]. We select, in these two windows, all channels
with a sensitivity higher than a fixed threshold (Fig. 7),
where the sensitivity of a channel is defined as the per-
cent of repercussion of the channel measurement when
surface temperature is increased by 1 K. Three hundred
fifty-seven channels are obtained in the first window
(with a threshold of 70%, which realizes a good com-
promise) and 262 are obtained in the second window
(with a threshold of 85%, because channels are more
sensitive to surface temperature in this window). These
two thresholds have been chosen heuristically because
they realize a good compromise between the dimension
reduction of observations and the use of redundant and
highly correlated channels for noise reduction.

b. Network learning and testing

The TIGR database (section 4b) is divided into a
learning base of 3000 atmospheres to make the regres-
sion and a base of 220 atmospheres to test the gener-
alization ability of the trained neural mapping.

To retrieve the variable Ts, we use a one-hidden-layer
MLP neural network (see section 3b for structural sta-
bilization). For the first window (800–980 cm21), the
neural structure notated as 357–20–1 is selected in
which 357 neurons are in the input layer (357 selected
brightness temperatures), 20 neurons are in the hidden
layer, and 1 neuron is in the output layer (representing
Ts). For the second window (2500–2750 cm21), the
structure selected is 262–20–1. The number of neurons
in the hidden layer, 20, has been determined using the
generalization test: we use different values and select
the number of hidden neurons corresponding to the min-
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FIG. 4. Minimal and maximal envelope of TIGR3 atmospheric temperature profiles for (a) all air masses, (b) tropical air mass, (c)
temperate-1 air mass, (d) temperate-2 air mass, (e) polar-1 air mass, and (f ) polar-2 air mass.

imum generalization error. In this way, we have a neural
network that is a good compromise between a small
learning error and a small generalization error (to avoid
the overfitting problem).

This neural mapping is trained by the error back-

propagation algorithm on the learning base. The IP reg-
ularization technique is used: simulated noise (accord-
ing to the NEDT specifications) is added to the input
data during the learning step. The generalization ability
of our model was then tested on noisy data computed
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FIG. 5. Mean (for TIGR3 atmospheres) temperature Jacobian in the 15.5–12.5-mm spectral region. The temperature
Jacobian is the derivative of radiative transfer function in Eq. (1) with respect to temperature T(P) at pressure P.

on the 220 test atmospheres. The instantaneous retrieval
of Ts from noisy data gives a generalization rms of
approximately 0.4 K. Similar results are obtained using
only the second spectral window. Without noise, the rms
error is less than 0.3 K. This means that the retrieval
error is significantly affected by measurement error: 1/4
of the rms is due to instrument noise and 3/4 is due to
the neural regression fit.

6. Atmospheric temperature profile retrieval

The 40 layers of 4A (see Table 2) were used to compute
the brightness temperature spectrum for clear conditions
over ocean, but for the retrieval, the vertical discretization
of the atmosphere has been changed (from 4A levels to
1-km levels) to match IASI specifications. The objective
of this section is then to retrieve the 32 lower atmospheric
temperatures of the 1-km-layer profiles.

a. Channel selection

The choice of the channels for the retrieval of tem-
perature profiles is made so that they are, as much as
possible, sensitive to only one constant-concentration
gas; then, variations of I(n) in Eq. (1) result mainly from
temperature variations. Thus, the ‘‘CO2 or NO2 (or both)
absorbing spectral regions’’ are used for the retrieval of
atmospheric temperature profiles: the 15.5–12.5-mm
(.645–800 cm21) and the 4.7–4.0-mm (.2100–2500
cm21) spectral regions.

To present the most relevant information to the neural
network inputs (section 3d), we use a channel selection
process. The feature selection method is based on the
study of the Jacobians in order to define the sensitivity

of a channel to atmospheric temperature. The mean Ja-
cobian in TIGR3 indicates the sensitivity relation be-
tween atmospheric layers and channels. The standard
deviation of the Jacobian (around the mean) is negligible
except near the surface; this means that the mean Ja-
cobian is robust to the atmospheric situation except in
the lower atmospheric layers.

The channel selection process has two steps. First,
channels are selected that are satisfying some quality
criteria (see Fig. 8), that is, specifying an information
as unambiguously as possible: 1) the half width half
height (or Jacobian extent), which characterizes the ver-
tical resolution and the channel integration (in terms of
the area below the Jacobian), has to be smaller than
fixed threshold; 2) the half width half maximum of chan-
nel (Jacobian width at midmaximum) has to be smaller
than fixed threshold so that the channels selected give
a more vertically localized information; 3) the Jacobian
center of a channel is near surface (with a threshold of
two atmospheric layers); and 4) the channel Jacobian
has a single peak. The results have been taken into ac-
count to determine the previous thresholds. We obtain
442 channels among the nominal 621. For the 15.5–
12.5-mm spectral region, we have selected 442 channels
from the 621 channels in the spectral range (645–800
cm21 with 0.25-cm21 resolution).

The second step chooses a vertically uniform subset
of the channels that meet the quality criteria. The IASI
instrument gives little information below 10 hPa, so our
retrievals will be limited to the pressure range 1013–10
hPa (32 layers with discretization of 1 km). We have
chosen nine channels for each of 30 layers (the previous
32 layers minus the two lowest layers sensitive to sur-
face temperature) between 1013 and 10 hPa. The final
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FIG. 6. Atmospheric temperature Jacobian profile for IASI and for six channels in the 15.5–12.5-mm spectral region.

number of channels is 270. However, it is important to
note that layers 23–28 have a deficit in channels and
that the sensitivity is higher in the lower atmosphere
(Fig. 9).

The 4.7–4.0-mm spectral region is also important for
the atmospheric temperature profile retrieval for two

reasons. First, the lower-atmospheric Jacobians are nar-
rower than in the 15.5–12.5-mm region, allowing for a
better vertical resolution. Second, the channels are less
affected by water vapor.

However, because of the larger noise in this spectral
domain, the channel selection has to be performed dif-
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FIG. 7. Sensitivity in percent to a 1-K perturbation of surface temperature vs wavenumber in the two IASI windows (800–980 and 2500–
2750 cm21).

FIG. 8. Schematic representation of the quality criteria on channel Jacobian used for the channel
selection on IASI spectra: WMHM is the width at midheight maximum (using height maximum)
and WMH is the width at midheight (using area below the Jacobian).

ferently than in the 15.5–12.5-mm region. The IASI
noise (see section 2b)—the standard deviation of the
Gaussian noise—may be as large as a few degrees for
channels sensing the higher layers (lower brightness
temperatures). The redundancy of the information due
to the number of channels does not compensate for this
noise. The spectral range used consequently covers
mainly the lower atmospheric layers. The Jacobian anal-
ysis selects channels in the 2140–2240-cm21 spectral
range (401 channels).

b. Network learning and testing

All the atmospheres used in the learning and the test-
ing phases are described by 30 atmospheric tempera-
tures (4A levels up to 7 hPa for 32-km height) and the
corresponding 671 selected brightness temperatures
computed by 4A. The neural network structure used for
the regression is then 671–50–30: 671 units in the input
layer (the 671 selected channels in the 15.5–12.5-mm
and the 4.7–4.0-mm spectral regions), 50 units in the
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FIG. 9. Mean temperature Jacobian for TIGR3 for the 270 channels (ordered by maximum absorption altitude)
selected from the 15.5–12.5-mm spectral region.

hidden layer, and 30 units in the output layer (the 30
lower atmospheric temperatures in 4A levels, the inter-
polation to 32 1-km levels being made afterward). The
number of neurons in the hidden layer, 50, has been
determined using the generalization test.

We have tested four configurations: the ‘‘all-airmass-
es’’ and the ‘‘tropical-airmass’’ configurations, with and
without the four-pixel averaging scheme (noise divided
by two; see section 2b).

1) ALL-AIRMASSES CONFIGURATION

We have merged TIGR1 and TIGR3 databases of sec-
tion 4a, and the resulting 3155 atmospheres have been
randomly subdivided into a learning base of 2700 at-
mospheres and a test base of 455 atmospheres.

The rms-fit errors (given for the 32 atmospheric 1-
km layers) for the learning and the test sets are shown
in Fig. 10a for the one-pixel configuration and Fig. 10b
for the four-pixel configuration. We have overall good
agreement among the computed and ‘‘observed’’ tem-
perature profiles: rms errors are close to 1 K on average
(less than 1.3 K except near 10 hPa). Also, we can see
that we are facing some problems in two vertical re-
gions:

1) In the upper layers of the atmosphere, IASI provides
poor information above 20 hPa (see Fig. 5) because
of the fact that the Jacobians of the channels sound-
ing these layers are more vertically extensive than
channels near surface and their amplitudes are small-
er. So, the compensation phenomenon is more im-
portant in this vertical region. Some of our experi-
ments have shown that the addition of the AMSU/
A (also planned for flight on Aqua) information im-
proves results in this vertical region (Aires 1999).

2) In the near-surface layers, the difference T40 ± Ts
complicates the retrieval because of, in part, the com-
pensation phenomenon (an underestimation of tem-
perature in one layer is compensated by an overes-
timation in a nearby layer). Consideration of specific
neural network compensation phenomena is given in
Aires et al. (1999) and Aires (1999). It is possible
that the simultaneous retrieval of Ts and T40, being
more constrained, may solve this problem.

Thus, even though the TIGR database possesses at-
mospheric situations with highly variable temperature
profiles, the rms errors obtained in Figs. 10a and 10b
are close to the IASI objective (1 K of rms error for 1
km in vertical resolution).

The use of four-pixel averages uniformly decreases
(by about 0.1 K) the rms error in the atmospheric layers.
This relatively small improvement can be explained by
the fact that IASI has many more channels than do
current instruments. The redundancy between channels
already suppresses part of the instrument noise. The
retrieval of atmospheric temperature is more sensitive
to fit error than the retrieval of surface temperature be-
cause IASI has fewer channels for atmospheric tem-
perature than for surface temperature. Furthermore, the
atmospheric temperature channels have a radiative
transfer function–Jacobian that is vertically broader,
which means that the information that they provide is
more ambiguous than those of surface temperature chan-
nels. It is then normal that the retrieval of atmospheric
temperature profile is more sensitive to fit error and less
to instrument noise error. This result shows also that the
solution regularization used to avoid noise effects, by
the IP method, is sufficiently efficient that the reduction
of noise by pixel-averaging has little impact on the qual-
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FIG. 10. Rms error profile for the atmospheric temperature retrieval in the learning set (continuous line) and in the generalization set
(discontinuous line) for the (a) all-airmasses–one-pixel, (b) all-airmasses–four-pixel, (c) tropical-airmass–one-pixel, and (d) tropical-airmass–
four-pixel configurations.

ity of the retrievals. This means that our method is able
to provide good results for each pixel to maximize the
horizontal resolution or to perform scene selection. Five
randomly chosen examples of retrievals using the test
set are shown in Fig. 11.

2) TROPICAL-AIRMASS CONFIGURATION

We have merged the Tropical-TIGR1 and the Trop-
ical-TIGR3 databases of section 4a, and the resulting
1070 atmospheres have been randomly subdivided into
a learning base of 1000 atmospheres and a test base of
70 atmospheres.

The rms errors (given for the 32 atmospheric 1-km
layers) in the learning and the test set are given in the
Fig. 10c for the one-pixel configuration and in the Fig.
10d for the four-pixel configuration. We see that the rms
error profile is significantly improved at 1 K, so the
specialization of the neural network to the tropical air

mass is important. As above, the rms error is also de-
creased by about 0.1 K with the four-pixel average con-
figuration.

It is important to note that the specialization of the
neural network for a specific air mass improves the re-
trievals but requires a training database with a larger
number of atmospheres. In this case, the 1070 tropical
atmospheres are not sufficient, so differences between
the learning and the test databases are not negligible.
Future work should address this very important problem
of both extensive and comprehensive learning and test
databases.

7. Conclusions and perspectives

A neural network approach uses maximum a priori
information to limit the number of free parameters in
the neural model so as to constrain the retrieval of sur-
face and atmospheric temperatures to a ‘‘better-posed’’
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FIG. 11. Five atmospheric temperature profile retrieval examples in the all-airmasses–one-pixel configuration.
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problem. The method is trained using the TIGR data-
base, that is, a vast and complex set of atmospheric
situations (from radiosonde measurements that are much
more irregular than model output) with a wide range of
radiosonde conditions, including rare events. This fact
is important in judging the quality of results. The surface
temperature for tropical situations yields an rms error
of 0.4 K for instantaneous retrievals. Results for at-
mospheric temperature profile retrievals are given for
four configurations (all-air masses or tropical-air mass,
with and without the four-pixel average). Results are
close to the specifications of the World Meteorological
Organization (WMO) for the all-airmasses configura-
tions, namely, 1-K rms error for the instantaneous tem-
perature retrieval with 1-km vertical resolution. The spe-
cialization of the tropical-air mass significantly im-
proves the results, which means that using a specialized
neural network for a few different air masses is the
appropriate strategy to adopt, but a larger dataset is then
required to train these specialized models. It is important
to note that the results obtained for the IASI retrievals
entirely depend on the complexity of the dataset used
to perform the statistics. Thus, this work has demon-
strated the potential of the IASI instrument to achieve
the WMO specifications for realistic conditions even for
the complex situations included here. This new instru-
ment is a clear advance over current instruments. The
MLP inversion technique developed here for the pro-
cessing of IASI observations is flexible enough to in-
troduce a priori information into the retrieval scheme,
is robust to noise, is accurate, and is very fast.

We plan to use independently a neural network for
the two other air masses (temperate and polar) by in-
creasing the TIGR database. Another idea is to use this
methodology with more spectral channels so as to re-
trieve not only the surface temperature and the tem-
perature profile, but also water vapor and ozone profiles.
The simultaneous retrieval of these variables is expected
to exploit the correlations between variables so as to
constrain better the inversion process. Considerable im-
provements are expected by the use in parallel of
AMSU/A observations [see Prigent et al. (2001) for
multi-intrument information fusion by neural network].
Further improvement also may be expected by the in-
troduction of a first-guess solution in the MLP inversion
(Aires et al. 2001).
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