
Remote sensing from the infrared atmospheric sounding

interferometer instrument

2. Simultaneous retrieval of temperature, water vapor, and

ozone atmospheric profiles

F. Aires
Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York, USA

NASA Goddard Institute for Space Studies, New York, New York, USA

W. B. Rossow
NASA Goddard Institute for Space Studies, New York, New York, USA

N. A. Scott and A. Chédin
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[1] A fast algorithm is developed to retrieve temperature, water vapor, and ozone
atmospheric profile from the high spectral resolution Infrared Atmospheric Sounding
Interferometer spaceborne instrument. Compression, denoising, and pattern recognition
algorithms have been developed in a companion paper [Aires et al., 2002b]. A principal
component analysis neural network using this a guess information is developed here to
retrieve simultaneously temperature, water vapor and ozone atmospheric profiles. The
performance of the resulting fast and accurate inverse model is evaluated with a
climatological data set including rare events: temperature is retrieved with an error �1 K,
and total amount of water vapor has a mean percentage error between 5 and 7%.
Atmospheric water vapor layers are retrieved with an error between 10 and 15% most of
the time. The statistics of the ozone retrieval are too optimistic due to a lack of
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1. Introduction

[2] The Infrared Atmospheric Sounding Interferometer
(IASI), is a high resolution (0.25 cm�1) Fourier transform
spectrometer scheduled for flight in 2005 on the European
polar Meteorological Operational Platform (METOP-1) sat-
ellite (see Aires et al. [2002b] for a more detailed descrip-
tion of IASI). The dimension (number of measurements per
field-of-view) of IASI observations is much higher than for
previous instruments: 8461 channels compared to 19 for
high-resolution infrared radiometer sounder (HIRS) on
TIROS-N operational vertical sounder. This is a major
problem in the definition of retrieval algorithms. To deal
with this high-dimension problem, various techniques to
select channels in the IASI spectrum have been developed:
See Rabier et al. [2002] or Aires et al. [2002a].

[3] We have developed a method based on principal
component analysis (PCA) for compressing, denoising,
and first-guess retrieval for IASI in the Aires et al.
[2002b] paper. Our approach, similar to the analysis of
Huang and Antonelli [2001], allows for a more complete
exploitation of all channels in the IASI spectra. The com-
pression step allows to reduction of the dimension of the
data used. The denoising process, using the redundancy
information among channels, reduces considerably the
instrument noise in IASI observations. The instrumental
noise in the overall IASI spectrum goes from 0.9K to 0.2K
after denoising. The PCA representation of the IASI spectra
allows also for a fast and multivariate first-guess retrieval.
This information is important for the development of
inversion approaches.
[4] In this study, we are interested in a nonlinear

inversion scheme for retrieving geophysical variables
from IASI measurements. The retrieval technique should
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be able to deal with realistic conditions: noise in the
measurements, nonlinearity of the inverse radiative trans-
fer equation, non-Gaussianity of the variables involved,
multicollinearities between variables, dependence of first-
guess errors on situation, uncertainties in the radiative
transfer model, etc. Neural network techniques, and in
particular the multilayer perceptron (MLP) technique,
have already proved very successful in the development
of computationally efficient inversion methods for satellite
data and for geophysical applications [Escobar et al.,
1993; Aires et al., 1998; Chaboureau et al., 1998;
Chevallier et al., 1998; Krasnopolsky et al., 2000; Aires
et al., 2001]. They are well adapted to solve nonlinear
problems and are especially designed to capitalize on the
inherent statistical relationships among the retrieved
parameters. No assumptions are made concerning the
probability distribution functions of the variables involved
in the problem, so the method is able to deal with non-
Gaussian distributions. Furthermore, the neural network
inversion method provides a model of the inverse radia-
tive transfer function in the atmosphere parameterized
once and for all, where classical methods use the inver-
sion technique for each observation. This type of inver-
sion scheme is called ‘‘global’’ inversion, as opposed to
‘‘local’’ inversion.
[5] Other great advantages of the MLP are its rapidity,

small amount of memory required and accuracy of results.
Fusion of information from different instruments coupled to
the nonlinear abilities of the neural network model [Prigent
et al., 2001a, 2001b], can exploit more fully the relation-
ships among the observations and among the variables that
are described implicitly in the training data set. Variational
techniques have to specify the covariance matrices explic-
itly, which is not a simple task since these matrices are
dependent on atmospheric situation, latitude, etc. In the
neural network, the requirement takes the form of good
sampling for the learning data set (this has to be done
anyway in the variational assimilation to estimate the
covariance matrices). But once this sampling is done, no
choice about how many covariance matrices to estimate,
and where, needs to be done. All the samples are used in the
learning stage.
[6] However, for ill-conditioned problems, the use of a

first-guess estimate and associated error covariance matrix
is essential for elaborate stand-alone retrieval schemes
[Chédin et al., 1985] as well as for three-dimensional/
four-dimensional variational assimilation schemes since it
controls the impact of the measurements on the retrieved
parameters [Thépaut et al., 1993]. A neural network tech-
niques has recently been developed [Aires et al., 2001] to
use such a priori information (i.e., a specific state-dependent
first-guess estimate). This has been a major improvement of
the classical neural network methods for remote sensing in
particular, and for inverse problems in general.
[7] In a previous study [Aires et al., 2002a] the authors

have used a neural network approach for the IASI retrieval
of surface temperature and atmospheric temperature profile.
This retrieval scheme was regularized by introducing a
priori information into the neural network scheme in many
ways. But only a part of IASI information was used, using a
channel selection based on the physical Jacobians, and no
first-guess information was used.

[8] We present here an application of a new neural
network method to the retrieval of atmospheric temperature,
water vapor and ozone profiles retrieval from IASI obser-
vations. We suppose in this study that the IASI spectra have
been selected to be cloud-free (see section comments for a
discussion on our future cloud scheme) [Schlussel and
Goldberg, 2001]. Previous studies have used information
content analysis to estimate the expected retrieval errors of
IASI [Amato and Serio, 1997; Prunet et al., 1998]; but these
information content estimates are dependent on some the-
oretical assumptions: Gaussian distributed quantities, inde-
pendence between first guess and observation, first-guess
error covariance matrices sometimes not fully determined
(i.e., no correlations between the first-guess errors of differ-
ent variables), etc. Our neural network model is parame-
terized and tested without these assumptions and over a
large number of real atmospheric situations as measured by
radiosondes, taken from the Thermodynamic Initial Guess
Retrieval (TIGR) database [Chédin et al., 1985; Achard,
1991; Escobar, 1993; Chevallier et al., 1998]. using
RTIASI (Radiative Transfer model for IASI) [Matricardi
and Saunders, 1999]. Even if this study concerns specifi-
cally the IASI instrument, the algorithms developped here
can easily be adapted to other instruments, in particular such
as the atmospheric infrared sounder (AIRS) on board the
Aqua spacecraft.
[9] This paper is organized as follows: The retrieval

algorithm based on a first-guess-based PCA-neural network
approach is presented in section 2. Temperature, water
vapor and ozone atmospheric profiles retrieval results are
presented in section 3. Section 4 concludes this study with
some perspectives on this work.

2. IASI Retrieval Method

[10] Various inversion schemes proceed by retrieving the
physical variables sequentially. In this work, we retrieve
these physical variables in parallel because the inverse
problem is in that case better constrained: (1) It is possible
to use the nonlinear correlations or dependencies among the
variables, (2) if an observation (i.e., a channel or a spectral
region) is dependent simultaneously on two or more con-
stituents, the retrieval scheme would be better suited to
resolve this ambiguity, and (3) the retrieved variables will
be in that case more consistent whereas hierarchical
schemes may introduce inconsistencies. The model devel-
oped here uses a nonlinear regression of the inverse RTM in
the atmosphere obtained from a MLP neural network.

2.1. Neural Network Model

[11] Part of the neural network scheme developed in the
next two sections is described in more detail by Aires et al.
[2001]. The multilayer perceptron (MLP) network is a
nonlinear mapping model composed of distinct layers of
neurons: The first layer S0 represents the input Y = ( yi; i 2
S0) of the mapping. The last layer SL represents the output
mapping X = (xk; k 2 SL). The intermediate layers Sm (0 < m
< L) are called the ‘‘hidden layers’’. These layers are
connected via neural links. We denote by W the parameters
of these links. It has been demonstrated [Hornik et al., 1989;
Cybenko, 1989] that any continuous function can be repre-
sented by a one-hidden-layer MLP.
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[12] A convenient feature of the neural network model is
that the analytical Jacobians (i.e., first derivatives of each
output with respect to each input of the model) can be easily
computed. These quantities allow for an a posteriori anal-
ysis of the fitted model [Aires et al., 1999, 2001].
[13] The learning algorithm is an optimization technique

that estimates the optimal network parameters W by mini-
mizing a cost function C1(W), approaching as closely as
possible the desired function. The criterion usually used to
derive W is the mean squared error in network outputs

C1 Wð Þ ¼ 1

2

X
k2 S2

Z Z
DE x̂k Y ;Wð Þ; xkð Þ2 P Y ; xkð ÞdxkdY ; ð1Þ

where DE is the Euclidean distance between xk, the kth
desired output component, and x̂k, the kth neural network
output component, and S2 is the output layer of the neural
network.
[14] In practice, the probability distribution function, P(Y,

xk), is sampled in a data set B = {(Y e, xk
e ), e = 1,. . ., E} of E

input/output couples, and C1(W) is then approximated by
the classical least squares criterion:

~C1 Wð Þ ¼ 1

2E

XE
e¼1

X
k2 S2

DE x̂k Y e;Wð Þ; xek
� �2

: ð2Þ

[15] The error back-propagation algorithm [Rumelhart et
al., 1986] is used to minimize ~C1(W). It is a stochastic
gradient descent algorithm that is very well adapted to the
MLP hierarchical architecture because the computational
cost is linearly related to the number of parameters.
Traditional gradient descent algorithms use all the samples
of the data set B to compute a mean Jacobian of the
criterion ~C1(W) in equation (2). These algorithms are
called deterministic gradient descent. The major inconven-
ience of this approach is that the descent can be trapped in
local minima. In the present application, a stochastic
gradient descent algorithm is adopted: It uses the gradient
descent formula iteratively for a unique random sample in
the data set. With some constraints not discussed here, the
stochastic character of this optimization algorithm theoret-
ically allows the optimization technique to reach the global
minimum of the criterion instead of a local minimum
[Duflo, 1996].
[16] The more neurons in the hidden layer, the better is

the fit to the learning data set. But the learning fit error is
not a good criterion to constrain the neural architecture
because too many neurons produces the overfitting prob-
lem: the network fits the learning data set very well, but is
bad for generalization (i.e., the fit error on an independent
data set of observations is large). For too few neurons in the
hidden layer, the generalization of the neural network is
insufficient because of the lack of complexity of the neural
architecture to represent the desired model (i.e., bias error).
For too many neurons, the complexity of the neural network
is too rich compared to the desired model and the overfitting
problem appear (i.e., variance error). This dilemma is called
the bias/variance dilemma [Geman et al., 1992]. Thus the
number of neurons in the hidden layer can be estimated by a
heuristic procedure that monitors the generalization fit
errors of the neural network as the configuration is varied:

we vary the number of neurons in the hidden layer until the
smallest generalization error is found.

2.2. Learning Algorithm With First Guess

[17] When an inverse problem is ill-posed, the solution
can be nonunique and/or unstable. The use of a priori first-
guess information is important to reduce ambiguities: The
chosen solution is then constrained so that it is physically
more coherent. Statistically, this regularization avoids local
minima during the learning process and speeds it up.
[18] Introduction of a priori first-guess information as

part of the input to the neural network was proposed by
Aires et al. [2001]. First, the neural transfer function
becomes:

x̂ ¼ gW xb; yo
� �

; ð3Þ

where x̂ is the retrieval (i.e., retrieved physical parameters),
gW is the neural network g with parameters W, xb is the first
guess for the retrieved physical parameters x, yo = RTM(x) +
h are the observations, where h is the observation noise.
[19] The learning algorithm consists of estimating the

parameters W of the neural network that minimize the mean
least squares error criterion. The term ‘‘mean’’ depends on
the probability distribution functions of the physical obser-
vation and retrieved quantities. In this experiment, the least
squares criterion has the following form:

C2 Wð Þ ¼ 1

2

Z Z ZZ
DE gW xb; yo

� �
; x

� �2
P x; yo; xb
� � ð4Þ

¼ 1

2

Z Z ZZ
DE gW xþ e; yþ hð Þ; xð Þ2P xð ÞPhðhÞPeðeÞ; ð5Þ

where P(x) is the probability distribution function of the
physical variables x that depends on the natural variability.
Ph(h) is the probability distribution function of the
observation noise h. Pe(e) is the probability distribution
function of the first-guess error e = xb � x. This noise is
presently simulated for IASI as white Gaussian noise, but
it is important to see that we can use any model for the
noise as long as we simulate this noise model during the
learning stage. Using noisy data in the inputs of the neural
network during the learning process is called ‘‘Input
Perturbation’’ and it is a powerful regularization technique
[Aires et al., 2002a]. The Input Perturbation constrains the
solution to be smooth, suppressing degrees of freedom.
One can also see that the use of different noise
simulations each time that we use a sample during the
learning is a way of increasing the number of samples in
the learning data set: from 5000 samples to 5000 times the
number of iterations (typically thousands) during the
learning stage.
[20] As explained by Aires et al. [2001], the quality

criterion in equation (4) is very similar to the quality
criterion used in variational assimilation. One of the main
differences is that the neural network criterion in equation
(4) involves the distribution P(x). This is due to the fact that
the neural network simulates the inverse of the radiative
transfer equation globally, once and for all, and uses the
distribution P(x) for this purpose. The neural network model
is then valid for all observations (i.e., global inversion). The
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variational assimilation model has to compute an estimator
for each observation (i.e., local inversion).
[21] To minimize the criterion of equation (4), we create a

data set B = {(xe, yoe, xb
e

); e = 1,. . ., E} that samples as well
as possible all the probability distribution functions in (4).
Then, the practical criterion used during the learning stage is
given by:

~C2 Wð Þ ¼ 1

2E

XE
e¼1

DE gW xb
e

; yo
e� �
; xe

� �2
: ð6Þ

[22] First, to sample the probability distribution function,
P(x), we select geophysical states (xe) that cover all natural
combinations and their correlations and by calculating ye =
RTM(xe) with the physical model (i.e., physical inversion).
Alternatively we could obtain these relationships from a
‘‘sufficiently large’’ set of collocated and coincident values
of y and x (i.e., empirical inversion).
[23] The quality of the resulting data set is a prerequisite

for a good retrieval method: the sampling should be
sufficiently dense so that interpolation between the samples
by the neural network is accurate, and the sampling should
represent any case that can occur in operational conditions
so that the neural network does not need to extrapolate the
behavior in the training data set to outlying cases.
[24] For sampling Ph, we need a priori information about

the measurement noise characteristics; a physical noise
model could be used, but if all we have is an estimation
of the noise magnitude, then we have to assume Gaussian
distributed noise h (see section 2.1 of companion paper,
same issue). To sample the first-guess variability with
respect to state x (i.e., sampling P(xb|x)), we use a first-
guess data set {xb

e

; e = 1,. . ., E}: this data set can be a
climatological data set or a 6-hour prediction (which would
have better error statistics, but would add model dependen-
cies). The balance between reliance on the first guess and
the direct measurements is then made automatically and
optimally by the neural network during the learning stage.
[25] The factorization between equations (4) and (5) uses

the hypothesis that the geophysical parameters x, the first-
guess error e and the instrument noise h are independent. If
this is not the case, it is still possible to use the criterion in
equation (4) instead of using the easier one in equation (5).
The principle consists of introducing this dependency into
the learning data set by using coupled atmospheric states x
and first-guess xb. The dependency structure used during the
learning stage should reflect the dependency structure
expected during the operational use of the neural network
retrieval. We will see in the next section that this is the
strategy adopted in this work. This possibility of introduc-
ing a complex structure of dependencies between the
observations and the first-guess errors is another illustration
of the flexibility of the neural network approach.
[26] What is the behavior of the neural retrieval when the

first-guess is far from the actual solution? In principle, the
nonlinearity of the neural network allows it to have different
weights on the observations and first-guess information,
depending on the situation. For example, if first guesses
are better in tropical cases than in polar cases, the neural
network would have inferred this behavior during the learn-
ing stage, and then will give less emphasis to the first guess
when a polar situation is analyzed. This supposes, once

again, that the training data set has been correctly sampled.
We are presently working on new tools to diagnose bad cases
(bad first guess, incoherent measurement, situations not
contained in the training data set, uncertainties of the neural
network on the possible retrievals, etc.). These tools would
take the form of a posteriori probability distributions for the
neural network retrieval that can be used to define con-
fidence intervals on the retrieved quantities.

2.3. General PCA Regression

[27] As for the PCA-based pattern recognition, the prac-
tical benefits of using PCA components, h, instead of the
raw IASI spectra, y, are that the method is faster because of
the significant input dimension reduction and uses obser-
vations with a reduced noise level. Furthermore, the learn-
ing stage is faster since the network has less inputs and less
parameters to estimate.
[28] The fact that the dimension of inputs is reduced

decreases also the number of parameters in the regression
model (i.e., weights in the neural network), and conse-
quently decreases the number of degrees of freedom in the
model, which is good for all regression techniques. The
variance in determining the actual values of the neural
weights is reduced, which also improves the retrieval. The
combination of PCA and neural network has been used, for
example, by Huang [1999] where a generalized Hebbian
algorithm (i.e., a different species of neural network archi-
tecture than the MLP used in this study) has been used to
perform a classification of seismic data.
[29] The quality criterion in equation (6) is simpler

because the inputs are decorrelated. Correlated inputs in a
regression are called multicollinearities and they are well-
known to disturb the model fit [Gelman et al., 1995].
Suppressing these multicollinearities makes the minimiza-
tion of the quality criterion more efficient: it is easier to
minimize, with less probability to become trapped in a local
minimum. It has the general effect of suppressing variance
in the determination of the parameters of the model and,
consequently, reducing the uncertainties in the retrievals.
For a more detailed description of PCA-based regression,
the reader is referred to Jolliffe [2002].
[30] How many PCA components should the regression

use? We have seen in section 4.2 of Aires et al. [2002b] that
the optimum compromise between the best spectral fit and
denoising in terms of global statistics for the whole IASI
spectrum is 30 PCA components. For some spectral regions,
more PCA components would have obtained better denois-
ing results, for others fewer components would have been
better: the 30 PCA components is the best compromise for
the overall IASI spectrum. Moreover, the retrieval techni-
que, especially if it’s a nonlinear method, can use nontrivial
information in the higher-order components. For example,
Huang and Antonelli [2001] found 150 components as the
optimal number of components for the denoising, but 250
components were optimal for the retrieval process. No
theoretical results exist to define the optimal PCA number
for regression, it entirely depends on the problem to be
solved. Various tests have to be performed. Our experience
with the neural network technique has shown that if the
problem is sufficiently well regularized, once the available
information has been provided to the neural inputs, adding
more PCA components does not have a big impact on the
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retrieval results, it is just more practically difficult because
of the increase in the data dimension. We then recommend
being conservative and taking more PCA components than
the denoising optimum would indicate.

2.4. Weighting in the Quality Criterion

[31] The inputs and outputs of the network are not
homogeneous; that is, different types of variables have
different dynamic ranges. As we will see in the following,
solving this problem necessitates diagnosing the learning
step and controlling correctly the system, in contradiction to
the black-box conception often associated with neural net-
works. The range of values, which is different for temper-
ature and water vapor, is not the true issue here since,
traditionally, the data are normalized to unity as inputs and
as outputs of the neural network. The true concern is the
different dynamical range of values for the same variable.
For example, the range of the water vapor path per layer can
go from zero to more than 5 cm, with an exponential
decrease with altitude. Using these physical values as out-
puts of the network can be misleading: an error of 0.1 cm in
a dry situation with a total of 5 cm would have the same
weight, during the learning stage, as an error of 0.1 cm in a
wet situation with a total of 0.2 cm. So depending on the
observed situation, an error of 2% would have the same
weight than an error of 50%! Absolute value errors are
inadequate in this case. To resolve this problem, we equalize
the importance of the different values. There are two
possibilities: using the logarithm of the water vapor content
or using a percentage error criterion

D gW xb
e

; yo
e� �
; xe

� �� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

gW xb
e ; yoeð Þi�yo

e

i

yo
e

i

� �2

vuut ;

instead of the absolute RMS error

DE gW xb
e

; yo
e� �
; xe

� �� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

gW xb
e ; yoeð Þi�yo

e

i

� �2r

in equation (6). In other words, for a global analysis, the
percentage error is a more pertinent criterion than the
absolute error that would have over emphasized wet
atmospheric situations. We will use, in the following, the
percentage error instead of an absolute error for the water
vapor and the ozone values. The counterpart of this new
criterion is that the percentage error could be exaggerated
for values very close to zero. We will comment on this
effect during the presentation of the results.
[32] The atmospheric temperature is described by 39

output values (i.e., 39 atmospheric levels) in the neural
network where water vapor and ozone are each described by
only 8 values (i.e., 8 atmospheric layers). In order to give
the same importance to each of these 3 physical variables,
we use an additional weight in the criterion for each of the
neural outputs: 1 for each of the temperature and 39/8 for
each of the water vapor and ozone values.

3. Results for the Retrieval of Temperature,
Water Vapor, and Ozone Atmospheric Profiles

[33] We have specialized a neural network, NN1, for wet
atmospheres (precipitable water amount larger than 1 cm)

and another one, NN2, for dry atmospheres (precipitable
water amount lower than 1 cm). We have 5,775 examples in
the first case and 5,780 for the second case (see section 3.2
in companion paper, same issue). The choice of dry or wet
configuration can be made using the first guess.

3.1. Wet Atmosphere Configuration

[34] The E = 5,775 wet examples have been randomly
separated into two subsets: a training set of 5000 examples
and a testing set of 775 examples. We take 100 PCA
components (i.e. more than the optimal 30 components for
denoising) as inputs for the IASI observation part since the
NN is able to use only the information that it needs for the
desired retrieval: y0 = h. It is possible that between the 30th
and the 100th PCA components, there is information on a
specific spectral region, not statistically important for the
whole spectrum, that is useful for the NN retrieval (see
section 2.3). Huang and Antonelli [2001], found 250 com-
ponents to be optimal for the retrieval process, but 150
components were already needed for the denoising; these
differences can be explained by differences in the instrument
and its noise (section 4.2 of companion paper, same issue).
[35] The architecture of the network NN1 is an MLP

(Figure 1) with 155 inputs coding the M = 100 PCA
components, y0 = h, and the first guess, xb (39 temperature,
8 water vapor and 8 ozone values), 80 neurons in the hidden
layer, and 55 neurons in the output layer coding the
retrieval, x. The number of neurons in the hidden layer is
estimated by a heuristic procedure that monitors the general-
ization errors of the neural network as the configuration is
varied (section 2.1): For too small a number of neurons in
the hidden layer, the generalization of the neural network is
insufficient because of the lack of complexity of the neural
architecture to represent the desired model (i.e., bias error).
For a too large number of neurons, the complexity of the
neural network is too rich compared to the desired model
and the overfitting problem, where the learning error is
small, but the generalization error is big, appears (i.e.,

Figure 1. Architecture of a multilayer perceptron neural
network with first guess a priori information: xb is the
climatological first guess, yo is the Infrared Atmospheric
Sounding Interferometer observation (brightness tempera-
ture spectrum compressed and denoised by PCA), and x is
the neural network retrieval.
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variance error). In practice, we use a different number of
neurons in the hidden layer and smaller generalization error
indicates the best compromise.
[36] Figure 2 represents the learning and the testing

curves of some of the retrieved quantities during the
learning stage. The purpose of Figure 2 is to show how

the inhomogeneity of the outputs in the neural network can
be a problem. Water vapor is much more complex to
retrieve than ozone or temperature: the curve has plateaus
which correspond to local minima, where the error can not
be decreased, and error increases, when the learning over-
shoots the local minima. To control this kind of problem, it
is important to give uniform weight to each of the variables,
this is the reason why we have modified our quality
criterion as explained in section 2.4. Even with this new
criterion, the water vapor can still be trapped at some stages,
while other variables (like the temperature or ozone) con-
tinue to improve. However, at some times, the constraints
between water vapor and temperature or ozone are so
strongly violated that the optimization algorithm changes
the water vapor to bypass this local minima: indicated by
first, an increase of the error and, then, a decrease of the
error. This shows how it can be advantageous to retrieve in
parallel more than one physical variable, the problem being
better constrained.
[37] Figure 3 presents three examples of retrievals. We

see, in each case, a major improvement of the temperature
profile retrieval over the first guess: the true profile and the
noisy retrieval are difficult to distinguish in Figure 3. This is
also true for the water vapor retrieval. The ozone is also
very good, but the first guess was already very close to the
correct solution. Consequently, the retrieval statistics for
wet atmospheres, represented in Figure 4, are good. The
RMS temperature error is mostly below 1 K, being in the
0.5–0.7 K range for level between 900 and 250 hPa. We
have already shown [Aires, 1999] that the fusion of the
information from the advanced microwave sounding unit
(AMSU) would improve significantly the temperature
retrieval above 200 hPa. The retrieval of water vapor is
very good: 5% error for total water vapor path, 10% for the
first 3 atmospheric layers, then errors in the range 10–20%,
except for the layer near 300 hPa. The peak error in the test
retrieval of water vapor at 300 hPa is probably due to an
insufficient number of atmospheres in the training data set.
Ozone retrieval is very good, but this retrieval is too
optimistic because of insufficient variability in the test data
set.

3.2. Dry Atmosphere Configuration

[38] The E = 5,780 dry examples have been randomly
separated in two subsets: a training set of 5000 examples
and a testing set of 780 examples. The architecture of the
network NN2 (Figure 1) is the same as NN1: 155 inputs, 80
neurons in the hidden layer, and 55 neurons in the output
layer.
[39] Figure 5 presents three examples of retrievals. The

same comments as for wet conditions hold: the overall
retrieval of temperature, water vapor and ozone seems good.
However, we see some small error in the retrieval of
atmospheric temperature above 200–100 hPa (see for
example temperature profile B). Also, errors can appear
when the true profile possesses too strong an inversion (see
profile C at level 100 hPa). Water vapor is well retrieved, a

Figure 2. Learning curves for (a) temperature at 817 hPa,
(b) water vapor between 358 and 478 hPa, and (c) ozone
between 20 and 45 hPa.

Figure 3. (opposite) Columns A–C: three examples of (from top to bottom) temperature, water vapor, and ozone
atmospheric profiles retrieval in the wet atmospheres configuration. Near-surface values for water vapor and ozone
represent the total vertical content.
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small over-estimate can be observed for atmosphere B.
Retrieval errors for ozone are small; even when the first
guess is already close to the true profile, like atmosphere C,
the retrieval scheme still improves the retrieval.

[40] Figure 6 shows the RMS retrieval errors for temper-
ature, water vapor and ozone for the dry condition neural
network. The retrieval of temperature is more difficult in dry
condition than in wet conditions (Figure 4). The RMS error
is still <1 K, except for near-surface levels, due to near-
surface inversions, and near 200 hPa. The total water vapor
content is retrieved with 7% mean percentage error and only
three atmospheric layers (around 300 hPa) are above 15%
mean error. It is important at this point to note that the
percentage error is not a perfect measure of the errors: for
zero or near-zero content, the percentage error has no
significance. For example, retrieving a content of 0.0002
cm for an actual true value of 0.0001 cm would produce a
percentage error of 300%, even if the absolute error is very
small. Furthermore, the physical limitations of the IASI
instrument, in terms of signal-to-noise ratio, will not allow a
good retrieval for very low water vapor contents. Figure 6b
shows the mean percentage error without the contribution of
the low water vapor content cases (less than 0.01 cm);
percentage mean error becomes uniform with height at 15%,
which is a good result for these dry situations.

3.3. Additional Comments

[41] There are four fields-of-view for each IASI sample,
covering an area with a diameter of 9 to 12 km at nadir.
Assuming homogeneous meteorological conditions, an
average of the four pixel measures can be used to perform
the retrievals: these four field-of-view provide redundant
measurements that can be averaged to reduce noise. We
have shown [Aires et al., 2002a] that because IASI has
thousands of channels, reducing the instrument noise by
pixel averaging has little impact on the IASI retrieval.
Furthermore, the atmospheric temperature, water vapor or
ozone channels have a radiative transfer function-Jacobian
that is vertically broad, which means that the information
that they provide is ambiguous (i.e., limited vertical reso-
lution). It is then normal that the retrieval of these atmos-
pheric profile is more sensitive to fit error and less to
instrument noise error. This was true without denoising
techniques, and it is even more true after our denoising
method has reduced the overall IASI noise from 0.9 to 0.2K.
The regularization used to avoid noise effects in our
approach, by the input perturbation method, is also suffi-
ciently efficient that the reduction of noise by pixel-averag-
ing has little impact on the quality of the retrievals. This
means that our method is able to provide good results for
each pixel to maximize the horizontal resolution or to
perform scene selection. So pixel-averaging is not recom-
mended.
[42] The neural network scheme that we have developed

in this study uses a direct radiative transfer model. This sort
of inversion approaches is often referred to as ‘‘physical’’
inversion in contrast to an algorithm that uses a data set of
colocated and coincident in situ measurements, called an
‘‘empirical’’ inversion. Both approaches can be used with
the neural network. The later cannot be generalized outside
the observed variability of the initial data set, whereas the
use of a physical direct model allows adaptative improve-

Figure 4. Error profile for the retrievals in the learning set
(solid line) and in the generalization set (dashed line) for (a)
temperature, (b) water vapor, (c) and ozone: wet atmo-
spheres configuration. Near-surface values for water vapor
and ozone represent the total vertical content.

Figure 5. (opposite) Columns A–C: three examples of (from top to bottom) temperature, water vapor, and ozone
atmospheric profiles retrieval in the dry atmospheres configuration. Near-surface values for water vapor and ozone
represent the total vertical content.
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ment based on the representativity of the data set. The
drawback of the physical inversion scheme is that the
relationship between observations and geophysical param-
eters is dependent on the direct model errors. But if these
errors have been characterized by a validation process, it is
possible to use these characteristics of model error during
the learning. This would be done by adding a simulated

model error to the brightness temperatures during the train-
ing stage. This is similar to the application of instrumental
noise to brightness temperatures during the training (section
2.2). The similarity in the treatment of these two errors is
close to what is done in variational assimilation where the
covariance matrix of the direct model and the instrument
noise are simply added.
[43] A major concern for any IASI retrieval scheme is

how to handle cloudy cases. The traditional approach is to
perform cloud clearing: cloudy situations have to be
detected in a first step, and then, information from a
microwave instrument (i.e., AMSU in the METOP case)
is used to remove in the IASI infrared observations the
effects of the clouds. Cloud-free observations are then used
by an inversion algorithm. In this work, we have supposed
that the IASI observation were previously cloud-cleared.
However, there is another possibility that needs to be
investigated. We could use the ability of the neural network
methods for fusion of information from different instru-
ments. Using infrared and microwave information together
in a single analysis might allow the retrieval of cloud
properties along with the temperature, water vapor and
ozone. Since the cloud parameters have different effects
on the infrared and microwave spectra it should be possible
to infer these cloud parameters from the differences of the
two instruments. For that purpose, we need a good first
guess for clouds such as the International Satellite Cloud
Climatology Project (ISCCP) data\-base [Rossow and
Schiffer, 1999].
[44] The simultaneous retrieval of many variables is an

important aspect of this work. As it has been shown, for
example, by Krasnopolsky et al. [1996, 1999], retrieving
more than one variable allows the use of the correlation
structure between these variables. This constrains better the
inverse problem which becomes less ambiguous. Aires et al.
[2001] retrieved the surface temperature and surface emis-
sivities using the special sensor microwave imager (SSM/I)
and the ISCCP cloud data. This retrieval is difficult and
ambiguous since their variability is mixed in the observa-
tions. In this case, the retrieval of both quantities is necessary
to reduce these ambiguities, but first-guess information is
also needed. We can use this same approach for the retrieval
of surface temperature and emissivities for IASI.

4. Conclusion and Perspectives

[45] Together with a PCA-based method for compressing,
denoising, and first-guess retrieval that has been described
in a companion paper (same issue), we have developed a
PCA-neural network retrieval scheme which uses first-guess
information. Such a neural network approach has several
similarities to the variational assimilation technique.
Although their practical implementation can appear very
different, Aires et al. [2001] has shown that the two
techniques share very basic aspects. They are both statistical
inversion methods that minimize a quality criterion, using a
priori first-guess information and a radiative transfer (phys-
ical) model.
[46] The three major advances of this work over Aires et

al. [2002a] on IASI are: the PCA-based compression,
denoising, and first-guess retrieval that decrease instrument
noise effects using redundancy information and reduce

Figure 6. Error profile for retrievals in the learning set
(solid line) and in the generalization set (dashed line) for (a)
temperature, (b) water vapor, and (c) ozone: Dry atmo-
spheres configuration. Near-surface values for water vapor
and ozone represent the total vertical content.
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also the dimension of the neural network, which allows the
faster retrieval to be applied at higher spatial resolution;
the introduction of a first-guess information that adds more
information than only the IASI observations, and that
constrains better the inversion process, improving retrieval
results; and the simultaneous retrieval of three atmospheric
variables (temperature, water vapor and ozone). This is
also a crucial point, since it allows us to exploit the
complex inter-dependencies among the observations,
among the variables and between observations and varia-
bles for a better constrained inverse problem. Krasnopol-
sky et al. [2000] have shown that the multivariate aspect of
the inversion scheme reduces the variance in the retrievals.
All these three improvements had a considerable impact
on the obtained results. They are also an important step for
defining an operational inversion scheme for IASI in
realistic conditions, providing many ways of improving
the algorithm in the future.
[47] Our experiments were made with the TIGR database,

i.e. a vast and complex set of real atmospheric situations
(from radiosonde measurements which are much more
irregular than model output) with rare events. This fact
provides a global applicability to our method. The retrieval
errors are small: temperature is retrieved with an error �1 K,
total amount of water vapor has a mean percentage error
between 5 and 7%. Atmospheric water vapor layers are
retrieved with error between 10 and 15% most of the time.
Statistics of ozone retrieval are too optimistic due to a lack
of representation of ozone variability of our data set.
[48] It is important to note that the results obtained for the

IASI retrieval are entirely dependent on the complexity of
the data set used to perform the statistics. Thus it has been
demonstrated, in this work, that even with complex atmos-
pheric situations, the potentialities of the IASI instrument
allow achieving the World Meteorological Organization
specifications. This new instrument will be a clear advance
compared to the previous instruments. It has been shown
also that the MLP inversion technique is a pertinent method
for the processing of IASI observations. It is flexible
enough to introduce a priori information to the retrieval
scheme, it is robust to noise, and it is very fast and accurate.
This new scheme is then an excellent candidate for the
processing of IASI observations.
[49] There are various perspectives on this work. We

have shown previously [Aires et al., 2002a] that the
specialization of the neural inversion scheme improves
the results. An advantage of our approach is that it can
easily accommodate nonlinear relationships between the
information from other instruments [Prigent et al., 2001a,
2001b]. This is a particularly interesting feature since
IASI results for high-altitude atmospheric temperature are
expected to be improved by AMSU [Aires, 1999]. This
should be beneficial to the retrieval results because more
information is added, and also because the structure of
correlation between the different instruments constrains
better the inverse problem, reducing the uncertainties.
Our algorithm needs also to be extended to land, and to
take into account cloudy conditions; for that purpose, we
will capitalize on our work on the SSM/I instrument
[Aires et al., 2001]. We plan also to develop the same
chain of algorithms for the AIRS instrument on the Aqua
platform.

[50] It would be highly interesting to combine this neural
network retrieval with the variational approach: this could be
done by using the neural network retrieval as an independent
first guess for the variational assimilation model, but it could
also be done assimilating the neural network retrieved
products instead of the IASI observations.

Notation

x vector of physical variables to retrieve.
x̂ estimate of x.
xb first guess a priori information for y.
e = xb�x, first-guess error.

RTM(x) radiative transfer model for the physical variables
x (also a vector).

yo IASI brightness temperature spectrum observa-
tions.

h IASI instrumental noise.
E number of samples in the data set.
h PCA compression of the IASI spectrum y.
s sigmoid function of the neural network.

gW neural network model, or transfer function for our
application.

W ={wij}, the set of the parameters of the neural
network.

yi neural network input value on neuron i.
xk neural network output value on neuron k.
S number of neurons in a neural network layer.
L number of hidden layers in the neural network.
B data set sampling the probability distribution

functions.
D generic distance.
DE Euclidean distance.
DM Mahalanobis distance.
P generic probability measure.

Ph(h) probability distribution function of h.
Pe(e) probability distribution function of e.

C1(W ) theoretical quality criterion for classical neural
network learning phase.

~C1(W ) practical quality criterion for classical neural
network learning phase.

C2(W ) theoretical quality criterion for classical neural
network learning phase with first-guess informa-
tion.

~C2(W ) practical quality criterion for classical neural
network learning phase with first-guess informa-
tion.
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thesis, Univ. Paris IX/Dauphine, Paris, 1999.

Aires, F., R. Armante, A. Chédin, and N. A. Scott, Surface and atmospheric

AIRES ET AL.: REMOTE SENSING FROM THE ISAI INSTRUMENT, 2 ACH 7 - 11



temperature retrieval with the high resolution interferometer IASI, Proc.
Am. Meteorol. Soc., 98, 181–186, 1998.

Aires, F., M. Schmitt, N. A. Scott, and A. Chédin, The weight smoothing
regularization for Jacobian stabilization, IEEE Trans. Neural Networks,
10(6), 1502–1510, 1999.

Aires, F., C. Prigent, W. B. Rossow, and M. Rothstein, A new neural net-
work approach including first guess for retrieval of atmospheric water
vapor, cloud liquid water path, surface temperature, and emissivities over
land from satellite microwave observations, J. Geophys. Res., 106(D14),
14,887–14,907, 2001.

Aires, F., A. Chédin, N. A. Scott, and W. B. Rossow, A regularized neural
net approach for retrieval of atmospheric and surface temperatures with
the IASI instrument, J. Appl. Meteorol., 41, 144–159, 2002a.

Aires, F., A. Chédin, N. A. Scott, and W. B. Rossow, Remote sensing from
the infrared atmospheric sounding interferometer instrument, 1, Compres-
sion, denoising, first-guess retrieval algorithms, J. Geophys. Res.,
107(DX), 10.1029/2001JD000955, in press, 2002b.

Amato, U., and C. Serio, The impact of random noise on the performance
of a new infrared atmospheric sounding interferometer (IASI) configura-
tion, Int. J. Remote Sens., 18(15), 3135–3143, 1997.

Chaboureau, J.-P., A. Chédin, and N. A. Scott, Remote sensing of the
vertical distribution of atmospheric water vapor from the TOVS observa-
tions: Method and validation, J. Geophys Res., 103(D8), 8743–8752,
1998.

Chédin, A., N. A. Scott, C. Wahiche, and P. Moulinier, The improved
initialization inversion method: A high resolution physical method for
temperature retrievals from Tiros-N series, J. Clim. Appl. Meteorol., 24,
128–143, 1985.
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Escobar, J., A. Chédin, F. Chéruy, and N. A. Scott, Réseaux de neurones
multicouches pour la restitution de variables thermodynamiques atmo-
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